
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4885308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environmental Science & Technology, 2020, 54, 7754-7757.	4.6	337
2	Water, sanitation, hygiene and enteric infections in children. Archives of Disease in Childhood, 2013, 98, 629-634.	1.0	172
3	High Adherence Is Necessary to Realize Health Gains from Water Quality Interventions. PLoS ONE, 2012, 7, e36735.	1.1	163
4	Why "improved―water sources are not always safe. Bulletin of the World Health Organization, 2014, 92, 283-289.	1.5	134
5	Shared Sanitation versus Individual Household Latrines: A Systematic Review of Health Outcomes. PLoS ONE, 2014, 9, e93300.	1.1	116
6	Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia. Journal of Water and Health, 2010, 8, 1-10.	1.1	114
7	Local Drinking Water Filters Reduce Diarrheal Disease in Cambodia: A Randomized, Controlled Trial of the Ceramic Water Purifier. American Journal of Tropical Medicine and Hygiene, 2008, 79, 394-400.	0.6	109
8	Estimating Infection Risks and the Global Burden of Diarrheal Disease Attributable to Intermittent Water Supply Using QMRA. Environmental Science & Technology, 2017, 51, 7542-7551.	4.6	100
9	Estimation of global recoverable human and animal faecal biomass. Nature Sustainability, 2018, 1, 679-685.	11.5	94
10	Water quality risks of â€~improved' water sources: evidence from <scp>C</scp> ambodia. Tropical Medicine and International Health, 2014, 19, 186-194.	1.0	85
11	Risk factors for childhood enteric infection in urban Maputo, Mozambique: A cross-sectional study. PLoS Neglected Tropical Diseases, 2018, 12, e0006956.	1.3	68
12	A controlled, before-and-after trial of an urban sanitation intervention to reduce enteric infections in children: research protocol for the Maputo Sanitation (MapSan) study, Mozambique. BMJ Open, 2015, 5, e008215-e008215.	0.8	61
13	Water quality perceptions and willingness to pay for clean water in peri-urban Cambodian communities. Journal of Water and Health, 2013, 11, 489-506.	1.1	58
14	Sustained use of a household-scale water filtration device in rural Cambodia. Journal of Water and Health, 2009, 7, 404-412.	1.1	57
15	Human fecal contamination of water, soil, and surfaces in households sharing poor-quality sanitation facilities in Maputo, Mozambique. International Journal of Hygiene and Environmental Health, 2020, 226, 113496.	2.1	56
16	Rainwater harvesting practices and attitudes in the Mekong Delta of Vietnam. Journal of Water Sanitation and Hygiene for Development, 2011, 1, 171-177.	0.7	53
17	Relative benefits of onâ€plot water supply over other â€~improved' sources in rural Vietnam. Tropical Medicine and International Health, 2013, 18, 65-74.	1.0	49
18	Water, sanitation, and hygiene in emergencies: summary review and recommendations for further research. Waterlines, 2012, 31, 11-29.	0.1	47

#	Article	IF	CITATIONS
19	Effects of an urban sanitation intervention on childhood enteric infection and diarrhea in Maputo, Mozambique: A controlled before-and-after trial. ELife, 2021, 10, .	2.8	44
20	Shared latrines in Maputo, Mozambique: exploring emotional well-being and psychosocial stress. BMC International Health and Human Rights, 2018, 18, 30.	2.5	42
21	Intensive allochthonous inputs along the Ganges River and their effect on microbial community composition and dynamics. Environmental Microbiology, 2019, 21, 182-196.	1.8	40
22	User preferences and willingness to pay for safe drinking water: Experimental evidence from rural Tanzania. Social Science and Medicine, 2017, 173, 63-71.	1.8	38
23	Zika Virus RNA Persistence in Sewage. Environmental Science and Technology Letters, 2020, 7, 659-664.	3.9	36
24	Measuring Environmental Exposure to Enteric Pathogens in Low-Income Settings: Review and Recommendations of an Interdisciplinary Working Group. Environmental Science & Technology, 2020, 54, 11673-11691.	4.6	35
25	Detection and Quantification of Enteric Pathogens in Aerosols Near Open Wastewater Canals in Cities with Poor Sanitation. Environmental Science & amp; Technology, 2021, 55, 14758-14771.	4.6	35
26	Seeing, believing, and behaving: Heterogeneous effects of an information intervention on household water treatment. Journal of Environmental Economics and Management, 2017, 86, 141-159.	2.1	33
27	Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier. American Journal of Tropical Medicine and Hygiene, 2008, 79, 394-400.	0.6	33
28	Adopt or Adapt: Sanitation Technology Choices in Urbanizing Malawi. PLoS ONE, 2016, 11, e0161262.	1.1	32
29	Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. Science of the Total Environment, 2022, 835, 155347.	3.9	31
30	Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama. International Journal of Environmental Research and Public Health, 2014, 11, 7376-7392.	1.2	30
31	Stool-Based Pathogen Detection Offers Advantages as an Outcome Measure for Water, Sanitation, and Hygiene Trials. American Journal of Tropical Medicine and Hygiene, 2020, 102, 260-261.	0.6	30
32	Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia. Water Science and Technology, 2004, 50, 111-115.	1.2	29
33	Point-of-use chlorination of turbid water: results from a field study in Tanzania. Journal of Water and Health, 2015, 13, 544-552.	1.1	29
34	Water and Sanitation in Urban America, 2017–2019. American Journal of Public Health, 2020, 110, 1567-1572.	1.5	29
35	Bioaerosol emissions associated with pit latrine emptying operations. Science of the Total Environment, 2019, 648, 1082-1086.	3.9	28
36	A novel droplet digital PCR human mtDNA assay for fecal source tracking. Water Research, 2020, 183, 116085.	5.3	28

#	Article	IF	CITATIONS
37	A matter of good taste: investigating preferences for in-house water treatment in peri-urban communities in Cambodia. Environment and Development Economics, 2016, 21, 291-317.	1.3	27
38	Analysis of Fecal Sludges Reveals Common Enteric Pathogens in Urban Maputo, Mozambique. Environmental Science and Technology Letters, 2020, 7, 889-895.	3.9	27
39	The Lancet Commission on water, sanitation and hygiene, and health. Lancet, The, 2021, 398, 1469-1470.	6.3	26
40	Limited Access to Safe Drinking Water and Sanitation in Alabama's Black Belt: A Cross-Sectional Case Study. Water Quality, Exposure, and Health, 2013, 5, 69-74.	1.5	24
41	Microbiological effectiveness of household water treatment technologies under field use conditions in rural Tanzania. Tropical Medicine and International Health, 2016, 21, 33-40.	1.0	24
42	Impact of an intervention to improve pit latrine emptying practices in low income urban neighborhoods of Maputo, Mozambique. International Journal of Hygiene and Environmental Health, 2020, 226, 113480.	2.1	24
43	Open Defecation Sites, Unmet Sanitation Needs, and Potential Sanitary Risks in Atlanta, Georgia, 2017–2018. American Journal of Public Health, 2018, 108, 1238-1240.	1.5	23
44	Making waves: Right in our backyard- surface discharge of untreated wastewater from homes in the United States. Water Research, 2021, 190, 116647.	5.3	23
45	Systems Science Approaches for Global Environmental Health Research: Enhancing Intervention Design and Implementation for Household Air Pollution (HAP) and Water, Sanitation, and Hygiene (WASH) Programs. Environmental Health Perspectives, 2020, 128, 105001.	2.8	22
46	Faecal contamination of the environment and child health: a systematic review and individual participant data meta-analysis. Lancet Planetary Health, The, 2020, 4, e405-e415.	5.1	22
47	Ambient-temperature incubation for the field detection of <i>Escherichia coli</i> in drinking water. Journal of Applied Microbiology, 2011, 110, 915-923.	1.4	21
48	A localized sanitation status index as a proxy for fecal contamination in urban Maputo, Mozambique. PLoS ONE, 2019, 14, e0224333.	1.1	21
49	Microbiological Effectiveness of Mineral Pot Filters in Cambodia. Environmental Science & Technology, 2012, 46, 12055-12061.	4.6	17
50	Human faeces-associated extended-spectrum β-lactamase-producing Escherichia coli discharge into sanitation systems in 2015 and 2030: a global and regional analysis. Lancet Planetary Health, The, 2020, 4, e246-e255.	5.1	17
51	Impact of sampling depth on pathogen detection in pit latrines. PLoS Neglected Tropical Diseases, 2021, 15, e0009176.	1.3	17
52	Microbial water quality improvement associated with transitioning from intermittent to continuous water supply in Nagpur, India. Water Research, 2021, 201, 117301.	5.3	17
53	Access to Household Water Quality Information Leads to Safer Water: A Cluster Randomized Controlled Trial in india. Environmental Science & Technology, 2018, 52, 5319-5329.	4.6	16
54	Shared Sanitation Management and the Role of Social Capital: Findings from an Urban Sanitation Intervention in Maputo, Mozambique. International Journal of Environmental Research and Public Health, 2018, 15, 2222.	1.2	16

#	Article	IF	CITATIONS
55	Gut carriage of antimicrobial resistance genes among young children in urban Maputo, Mozambique: Associations with enteric pathogen carriage and environmental risk factors. PLoS ONE, 2019, 14, e0225464.	1.1	16
56	Assessment of antibiotic resistant coliforms from bioaerosol samples collected above a sewage-polluted river in La Paz, Bolivia. International Journal of Hygiene and Environmental Health, 2020, 228, 113494.	2.1	16
57	Impact of an Urban Sanitation Intervention on Enteric Pathogen Detection in Soils. Environmental Science & Technology, 2021, 55, 9989-10000.	4.6	16
58	Factors Associated with Water Service Continuity for the Rural Populations of Bangladesh, Pakistan, Ethiopia, and Mozambique. Environmental Science & Technology, 2019, 53, 4355-4363.	4.6	15
59	Quantitative Microbial Risk Assessment of Pediatric Infections Attributable to Ingestion of Fecally Contaminated Domestic Soils in Low-Income Urban Maputo, Mozambique. Environmental Science & Technology, 2021, 55, 1941-1952.	4.6	15
60	Waterborne pathogen monitoring in Jaipur, India reveals potential microbial risks of urban groundwater supply. Npj Clean Water, 2020, 3, .	3.1	14
61	Selecting Household Water Treatment Options on the Basis of World Health Organization Performance Testing Protocols. Environmental Science & Technology, 2019, 53, 5043-5051.	4.6	13
62	Bioaerosol sampling optimization for community exposure assessment in cities with poor sanitation: A one health cross-sectional study. Science of the Total Environment, 2020, 738, 139495.	3.9	13
63	Risk factors for child food contamination in lowâ€ncome neighbourhoods of Maputo, Mozambique: An exploratory, crossâ€sectional study. Maternal and Child Nutrition, 2020, 16, e12991.	1.4	13
64	Detection and assessment of the antibiotic resistance of Enterobacteriaceae recovered from bioaerosols in the Choqueyapu River area, La Paz – Bolivia. Science of the Total Environment, 2021, 760, 143340.	3.9	13
65	Using Feedback to Improve Accountability in Global Environmental Health and Engineering. Environmental Science & Technology, 2021, 55, 90-99.	4.6	13
66	Adherence to Point-of-Use Water Treatment over Short-Term Implementation: Parallel Crossover Trials of Flocculation–Disinfection Sachets in Pakistan and Zambia. Environmental Science & Technology, 2018, 52, 6601-6609.	4.6	12
67	Novel methods for global water safety monitoring: comparative analysis of low-cost, field-ready E. coli assays. Npj Clean Water, 2020, 3, .	3.1	12
68	Reaching those left behind: knowledge gaps, challenges, and approaches to achieving SDG 6 in high-income countries. Journal of Water Sanitation and Hygiene for Development, 2021, 11, 849-858.	0.7	12
69	The Critical Role of Compliance in Delivering Health Gains from Environmental Health Interventions. American Journal of Tropical Medicine and Hygiene, 2019, 100, 777-779.	0.6	12
70	Quantitative assessment of exposure to fecal contamination in urban environment across nine cities in low-income and lower-middle-income countries and a city in the United States. Science of the Total Environment, 2022, 806, 151273.	3.9	12
71	Toward shotgun metagenomic approaches for microbial source tracking sewage spills based on laboratory mesocosms. Water Research, 2022, 210, 117993.	5.3	12
72	Associations between enteric pathogen carriage and height-for-age, weight-for-age and weight-for-height in children under 5 years old in urban Dhaka, Bangladesh. Epidemiology and Infection, 2020, 148, e39.	1.0	11

#	Article	IF	CITATIONS
73	Associations between Self-Reported Gastrointestinal Illness and Water System Characteristics in Community Water Supplies in Rural Alabama: A Cross-Sectional Study. PLoS ONE, 2016, 11, e0148102.	1.1	11
74	Demonstration of Tryptophan-Like Fluorescence Sensor Concepts for Fecal Exposure Detection in Drinking Water in Remote and Resource Constrained Settings. Sustainability, 2020, 12, 3768.	1.6	10
75	Impacts of an Urban Sanitation Intervention on Fecal Indicators and the Prevalence of Human Fecal Contamination in Mozambique. Environmental Science & Technology, 2021, 55, 11667-11679.	4.6	10
76	Extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli presence in urban aquatic environments in Kanpur, India. Journal of Water and Health, 2020, 18, 849-854.	1.1	9
77	Environmental sanitation and the evolution of water, sanitation and hygiene. Bulletin of the World Health Organization, 2022, 100, 286-288.	1.5	9
78	Drinking water chlorination has minor effects on the intestinal flora and resistomes of Bangladeshi children. Nature Microbiology, 2022, 7, 620-629.	5.9	9
79	Nocturnal Convenience : The Problem of Securing Universal Sanitation Access in Alabama's Black Belt. Environmental Justice, 2013, 6, 200-205.	0.8	8
80	Antimicrobial resistance genes are enriched in aerosols near impacted urban surface waters in La Paz, Bolivia. Environmental Research, 2021, 194, 110730.	3.7	8
81	Using path analysis to test theory of change: a quantitative process evaluation of the MapSan trial. BMC Public Health, 2021, 21, 1411.	1.2	8
82	Quantitative microbial risk assessment of outdoor aerosolized pathogens in cities with poor sanitation. Science of the Total Environment, 2022, 827, 154233.	3.9	8
83	Measuring and valuing broader impacts in public health: Development of a sanitationâ€related quality of life instrument in Maputo, Mozambique. Health Economics (United Kingdom), 2022, 31, 466-480.	0.8	8
84	Rapid drinking water safety estimation in cities: Piloting a globally scalable method in Cochabamba, Bolivia. Science of the Total Environment, 2019, 654, 1132-1145.	3.9	7
85	A systematic review of enteric pathogens and antibiotic resistance genes in outdoor urban aerosols. Environmental Research, 2022, 212, 113097.	3.7	7
86	The effects of storage time and temperature on recovery of salivary secretory immunoglobulin A. American Journal of Human Biology, 2014, 26, 417-420.	0.8	6
87	Community-Led Total Sanitation Moves the Needle on Ending Open Defecation in Zambia. American Journal of Tropical Medicine and Hygiene, 2019, 100, 767-769.	0.6	6
88	Aligning learning objectives and approaches in global engineering graduate programs: Review and recommendations by an interdisciplinary working group. Development Engineering, 2022, 7, 100095.	1.4	6
89	Environmental impacts of mass drug administration programs: exposures, risks, and mitigation of antimicrobial resistance. Infectious Diseases of Poverty, 2022, 11, .	1.5	6
90	Safety of packaged water distribution limited by household recontamination in rural Cambodia. Journal of Water and Health, 2014, 12, 343-347.	1.1	4

#	Article	IF	CITATIONS
91	Laboratory evaluation of a new coagulant/disinfectant point-of-use water treatment product for emergencies. Journal of Applied Microbiology, 2016, 121, 892-902.	1.4	4
92	Open Waste Canals as Potential Sources of Antimicrobial Resistance Genes in Aerosols in Urban Kanpur, India. American Journal of Tropical Medicine and Hygiene, 2021, 104, 1761-1767.	0.6	4
93	Risk factors for early childhood growth faltering in rural Cambodia: a cross-sectional study. BMJ Open, 2022, 12, e058092.	0.8	4
94	Moving up the sanitation ladder with the help of microfinance in urban Malawi. Journal of Water Sanitation and Hygiene for Development, 2018, 8, 100-112.	0.7	3
95	Development and field testing of lowâ€cost, quantal microbial assays with volunteer reporting as scalable means of drinking water safety estimation. Journal of Applied Microbiology, 2019, 126, 1944-1954.	1.4	3
96	Child Salivary SIgA and Its Relationship to Enteric Infections and EED Biomarkers in Maputo, Mozambique. International Journal of Environmental Research and Public Health, 2020, 17, 3035.	1.2	3
97	Producing ratio measures of effect with quantitative microbial risk assessment. Risk Analysis, 0, , .	1.5	3
98	Microbiological performance of novel household water treatment devices in India. Water Science and Technology: Water Supply, 2014, 14, 91-98.	1.0	2
99	Temporal Heterogeneity of Water Quality in Rural Alabama Water Supplies. Journal - American Water Works Association, 2015, 107, E401.	0.2	2
100	Invited Perspective: Sanitation Innovation Holds Promise but Must Consider Risks to Users. Environmental Health Perspectives, 2022, 130, 11301.	2.8	2
101	Mobile Health Technologies Are Essential for Reimagining the Future of Water, Sanitation, and Hygiene. American Journal of Tropical Medicine and Hygiene, 2022, 106, 1017-1021.	0.6	1
102	Transcriptomic and rRNA:rDNA Signatures of Environmental versus Enteric Enterococcus faecalis Isolates under Oligotrophic Freshwater Conditions. Microbiology Spectrum, 2021, 9, e0081721.	1.2	0
103	Elevated Fecal Mitochondrial DNA from Symptomatic Norovirus Infections Suggests Potential Health Relevance of Human Mitochondrial DNA in Fecal Source Tracking. Environmental Science and Technology Letters, 0, , .	3.9	0