List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4885212/publications.pdf Version: 2024-02-01

ANIDRAN RASH

#	Article	IF	CITATIONS
1	Japanese encephalitis viral infection modulates proinflammatory cyto/chemokine profile in primary astrocyte and cell line of astrocytic origin. Metabolic Brain Disease, 2022, 37, 1487-1502.	1.4	4
2	miR-451a Regulates Neuronal Apoptosis by Modulating 14-3-3ζ-JNK Axis upon Flaviviral Infection. MSphere, 2022, 7, .	1.3	9
3	Japanese Encephalitis Virus infection increases USP42 to stabilize TRIM21 and OAS1 for neuroinflammatory and anti-viral response in human microglia. Virology, 2022, 573, 131-140.	1.1	6
4	The Expanding Regulatory Mechanisms and Cellular Functions of Long Non-coding RNAs (IncRNAs) in Neuroinflammation. Molecular Neurobiology, 2021, 58, 2916-2939.	1.9	28
5	Retinoic Acid-Inducible Gene I-Like Receptors Activate Snail To Limit RNA Viral Infections. Journal of Virology, 2021, 95, e0121621.	1.5	8
6	Involvement of RIG-I Pathway in Neurotropic Virus-Induced Acute Flaccid Paralysis and Subsequent Spinal Motor Neuron Death. MBio, 2021, 12, e0271221.	1.8	10
7	Catching hold of COVIDâ€19â€related encephalitis by tracking ANGPTL4 signature in blood. Journal of Neurochemistry, 2021, , .	2.1	4
8	Patient and Plan Spending after State Specialty-Drug Out-of-Pocket Spending Caps. New England Journal of Medicine, 2020, 383, 558-566.	13.9	12
9	Atorvastatin ameliorates viral burden and neural stem/progenitor cell (NSPC) death in an experimental model of Japanese encephalitis. Journal of Biosciences, 2020, 45, 1.	0.5	13
10	The COVID-19 pandemic: catching up with the cataclysm. F1000Research, 2020, 9, 638.	0.8	8
11	miR-301a Regulates Inflammatory Response to Japanese Encephalitis Virus Infection via Suppression of NKRF Activity. Journal of Immunology, 2019, 203, 2222-2238.	0.4	34
12	Identification and Classification of Hubs in microRNA Target Gene Networks in Human Neural Stem/Progenitor Cells following Japanese Encephalitis Virus Infection. MSphere, 2019, 4, .	1.3	14
13	Chandipura virus changes cellular miRNome in human microglial cells. Journal of Medical Virology, 2019, 94, 480-490.	2.5	4
14	Neural Antiâ€Inflammatory Natural Product Periconianone A: Total Synthesis and Biological Evaluation. European Journal of Organic Chemistry, 2019, 2019, 2376-2381.	1.2	6
15	Japanese Encephalitis Virusâ€induced <i>letâ€7a/b</i> interacted with the <scp>NOTCH</scp> â€ <scp>TLR</scp> 7 pathway in microglia and facilitated neuronal death via caspase activation. Journal of Neurochemistry, 2019, 149, 518-534.	2.1	51
16	Platelet factor 4 promotes rapid replication and propagation of Dengue and Japanese encephalitis viruses. EBioMedicine, 2019, 39, 332-347.	2.7	35
17	Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress. Cell Death and Disease, 2018, 8, e2556-e2556.	2.7	48
18	Chandipura Virus Induced Neuronal Apoptosis via Calcium Signaling Mediated Oxidative Stress. Frontiers in Microbiology, 2018, 9, 1489.	1.5	14

#	Article	IF	CITATIONS
19	HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway. Journal of Neuroinflammation, 2018, 15, 177.	3.1	60
20	Nitrosporeusine analogue ameliorates Chandipura virus induced inflammatory response in CNS via NFÎ⁰b inactivation in microglia. PLoS Neglected Tropical Diseases, 2018, 12, e0006648.	1.3	6
21	PLVAP and GKN3 Are Two Critical Host Cell Receptors Which Facilitate Japanese Encephalitis Virus Entry Into Neurons. Scientific Reports, 2018, 8, 11784.	1.6	31
22	GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells. Journal of Virology, 2017, 91, .	1.5	109
23	The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Science Signaling, 2017, 10, eaaf5185.	1.6	68
24	Identification of new anti-inflammatory agents based on nitrosporeusine natural products of marine origin. European Journal of Medicinal Chemistry, 2017, 135, 89-109.	2.6	15
25	Overview on Japanese Encephalitis in South and Southeast Asia. Neglected Tropical Diseases, 2017, , 277-327.	0.4	0
26	Recent advances in Japanese encephalitis. F1000Research, 2017, 6, 259.	0.8	13
27	miR-301a mediated immune evasion by Japanese encephalitis virus. Oncotarget, 2017, 8, 90620-90621.	0.8	4
28	Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses. Scientific Reports, 2016, 6, 32593.	1.6	14
29	Acute Encephalitis Syndrome in India: The Changing Scenario. Annals of Neurosciences, 2016, 23, 131-133.	0.9	20
30	Microglial activation induces neuronal death in Chandipura virus infection. Scientific Reports, 2016, 6, 22544.	1.6	27
31	Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5. Scientific Reports, 2016, 6, 27685.	1.6	62
32	Infections and Inflammation in the Brain and Spinal Cord: A Dangerous Liaison. , 2016, , 71-138.		1
33	Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells. Scientific Reports, 2016, 6, 20263.	1.6	54
34	HSP60 plays a regulatory role in IL-1Î ² -induced microglial inflammation via TLR4-p38 MAPK axis. Journal of Neuroinflammation, 2016, 13, 27.	3.1	90
35	Graph theoretic network analysis reveals protein pathways underlying cell death following neurotropic viral infection. Scientific Reports, 2015, 5, 14438.	1.6	9
36	Role of oral Minocycline in acute encephalitis syndrome in India – a randomized controlled trial. BMC Infectious Diseases, 2015, 16, 67.	1.3	39

#	Article	IF	CITATIONS
37	Chandipura virus perturbs cholesterol homeostasis leading to neuronal apoptosis. Journal of Neurochemistry, 2015, 135, 368-380.	2.1	7
38	HSP70 mediates survival in apoptotic cells—Boolean network prediction and experimental validation. Frontiers in Cellular Neuroscience, 2015, 9, 319.	1.8	13
39	RIGâ€ŧ knockdown impedes neurogenesis in a murine model of Japanese encephalitis. Cell Biology International, 2015, 39, 224-229.	1.4	6
40	miR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells. Journal of Neuroinflammation, 2015, 12, 30.	3.1	99
41	Total Syntheses and Biological Evaluation of (±)-Botryosphaeridione, (±)-Pleodendione, 4- <i>epi</i> -Periconianone B, and Analogues. ACS Medicinal Chemistry Letters, 2015, 6, 1117-1121.	1.3	12
42	Systemic Staphylococcus aureus infection in restraint stressed mice modulates impaired immune response resulting in improved behavioral activities. Journal of Neuroimmunology, 2015, 288, 102-113.	1.1	3
43	Cerebrospinal Fluid Biomarkers of Japanese Encephalitis. F1000Research, 2015, 4, 334.	0.8	9
44	Micro <scp>RNA</scp> â€29b modulates Japanese encephalitis virusâ€induced microglia activation by targeting tumor necrosis factor alphaâ€induced protein 3. Journal of Neurochemistry, 2014, 129, 143-154.	2.1	87
45	Combination therapy with ampicillin and azithromycin in an experimental pneumococcal pneumonia is bactericidal and effective in down regulating inflammation in mice. Journal of Inflammation, 2014, 11, 5.	1.5	19
46	Regulatory role of TRIM21 in the type-I interferon pathway in Japanese encephalitis virus-infected human microglial cells. Journal of Neuroinflammation, 2014, 11, 24.	3.1	69
47	Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation. NeuroToxicology, 2014, 41, 143-153.	1.4	57
48	Neural Stem/Progenitor Cells Induce Conversion of Encephalitogenic T Cells into CD4+-CD25+- FOXP3+ Regulatory T cells. Viral Immunology, 2014, 27, 48-59.	0.6	15
49	MicroRNA 155 Regulates Japanese Encephalitis Virus-Induced Inflammatory Response by Targeting Src Homology 2-Containing Inositol Phosphatase 1. Journal of Virology, 2014, 88, 4798-4810.	1.5	111
50	Role of pattern recognition receptors in flavivirus infections. Virus Research, 2014, 185, 32-40.	1.1	53
51	Cellular therapy by allogeneic macrophages against visceral leishmaniasis: Role of TNF-α. Cellular Immunology, 2014, 290, 152-163.	1.4	10
52	Vespa tropica venom suppresses lipopolysaccharide-mediated secretion of pro-inflammatory cyto-chemokines by abrogating nuclear factor-κ B activation in microglia. Inflammation Research, 2014, 63, 657-665.	1.6	12
53	TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection. Neurobiology of Disease, 2014, 69, 235-247.	2.1	52
54	Japanese Encephalitis: A Tale of Inflammation and Degeneration in the Central Nervous System. , 2014, ,		4

309-335.

#	Article	IF	CITATIONS
55	Modulation of Neuronal Proteome Profile in Response to Japanese Encephalitis Virus Infection. PLoS ONE, 2014, 9, e90211.	1.1	27
56	Japanese Encephalitis Virus Infection Alters Both Neuronal and Astrocytic Differentiation of Neural Stem/Progenitor Cells. Journal of NeuroImmune Pharmacology, 2013, 8, 664-676.	2.1	19
57	Chandipura Virus Induces Neuronal Death through Fas-Mediated Extrinsic Apoptotic Pathway. Journal of Virology, 2013, 87, 12398-12406.	1.5	28
58	Interleukinâ€1β orchestrates underlying inflammatory responses in microglia via Krüppelâ€like factor 4. Journal of Neurochemistry, 2013, 127, 233-244.	2.1	47
59	Increased resistance of immobilized-stressed mice to infection: Correlation with behavioral alterations. Brain, Behavior, and Immunity, 2013, 28, 115-127.	2.0	8
60	Histone deacetylase inhibition by Japanese encephalitis virus in monocyte/macrophages: A novel viral immune evasion strategy. Immunobiology, 2013, 218, 1235-1247.	0.8	17
61	Japanese encephalitis virus infection modulates the expression of suppressors of cytokine signaling (SOCS) in macrophages: Implications for the hosts' innate immune response. Cellular Immunology, 2013, 285, 100-110.	1.4	37
62	Bispidine-Amino Acid Conjugates Act as a Novel Scaffold for the Design of Antivirals That Block Japanese Encephalitis Virus Replication. PLoS Neglected Tropical Diseases, 2013, 7, e2005.	1.3	46
63	Azithromycin in combination with riboflavin decreases the severity of Staphylococcus aureus infection induced septic arthritis by modulating the production of free radicals and endogenous cytokines. Inflammation Research, 2013, 62, 259-273.	1.6	33
64	MicroRNAs in the Brain: It's Regulatory Role in Neuroinflammation. Molecular Neurobiology, 2013, 47, 1034-1044.	1.9	61
65	Japanese encephalitis in India: risk of an epidemic in the National Capital Region. International Health, 2013, 5, 166-168.	0.8	5
66	Microglia in Development and Disease. Clinical and Developmental Immunology, 2013, 2013, 1-2.	3.3	8
67	Microglial Activation: Measurement of Cytokines by Flow Cytometry. Methods in Molecular Biology, 2013, 1041, 71-82.	0.4	3
68	STING Mediates Neuronal Innate Immune Response Following Japanese Encephalitis Virus Infection. Scientific Reports, 2012, 2, 347.	1.6	99
69	Gentamicin in Combination with Ascorbic Acid Regulates the severity of <i><scp>S</scp>taphylococcus aureus</i> Infection–Induced Septic Arthritis in Mice. Scandinavian Journal of Immunology, 2012, 76, 528-540.	1.3	38
70	NLRP3 Inflammasome: Key Mediator of Neuroinflammation in Murine Japanese Encephalitis. PLoS ONE, 2012, 7, e32270.	1.1	126
71	Fenofibrate Reduces Mortality and Precludes Neurological Deficits in Survivors in Murine Model of Japanese Encephalitis Viral Infection. PLoS ONE, 2012, 7, e35427.	1.1	41
72	Network medicine in drug design: implications for neuroinflammation. Drug Discovery Today, 2012, 17, 600-607.	3.2	16

#	Article	IF	CITATIONS
73	Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation. Journal of Neuroinflammation, 2012, 9, 57.	3.1	38
74	Epigenetic regulation of selfâ€renewal and fate determination in neural stem cells. Journal of Neuroscience Research, 2012, 90, 529-539.	1.3	40
75	Viral infection and neural stem/progenitor cell's fate: Implications in brain development and neurological disorders. Neurochemistry International, 2011, 59, 357-366.	1.9	34
76	Microglial response to viral challenges: Every silver lining comes with a cloud. Frontiers in Bioscience - Landmark, 2011, 16, 2187.	3.0	33
77	Abrogated Inflammatory Response Promotes Neurogenesis in a Murine Model of Japanese Encephalitis. PLoS ONE, 2011, 6, e17225.	1.1	57
78	Possible Protective Role of Chloramphenicol in TSST-1 and Coagulase-Positive Staphylococcus aureus-Induced Septic Arthritis with Altered Levels of Inflammatory Mediators. Inflammation, 2011, 34, 269-282.	1.7	12
79	Japanese Encephalitis Virus-Infected Macrophages Induce Neuronal Death. Journal of NeuroImmune Pharmacology, 2011, 6, 420-433.	2.1	23
80	Pre-Conditioning Induces the Precocious Differentiation of Neonatal Astrocytes to Enhance Their Neuroprotective Properties. ASN Neuro, 2011, 3, AN20100029.	1.5	37
81	Minimal Modeling Approaches to Value of Information Analysis for Health Research. Medical Decision Making, 2011, 31, E1-E22.	1.2	53
82	RIG-I Mediates Innate Immune Response in Mouse Neurons Following Japanese Encephalitis Virus Infection. PLoS ONE, 2011, 6, e21761.	1.1	84
83	Use of minocycline in viral infections. Indian Journal of Medical Research, 2011, 133, 467-70.	0.4	20
84	Minocycline Differentially Modulates Viral Infection and Persistence in an Experimental Model of Japanese Encephalitis. Journal of NeuroImmune Pharmacology, 2010, 5, 553-565.	2.1	29
85	Epigenetic modulation of host: new insights into immune evasion by viruses. Journal of Biosciences, 2010, 35, 647-663.	0.5	39
86	Effect of particulate antigenic stimulation or in vivo administration of interleukin-6 on the level of steroidogenic enzymes in adrenal glands and lymphoid tissues of mice with parallel alteration in endogenous inflammatory cytokine level. Cellular Immunology, 2010, 261, 23-28.	1.4	4
87	Inflammasome signaling at the heart of central nervous system pathology. Journal of Neuroscience Research, 2010, 88, 1615-1631.	1.3	163
88	Critical role of lipid rafts in virus entry and activation of phosphoinositide 3′ kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. Journal of Neurochemistry, 2010, 115, 537-549.	2.1	84
89	A Common Carcinogen Benzo[a]pyrene Causes Neuronal Death in Mouse via Microglial Activation. PLoS ONE, 2010, 5, e9984.	1.1	73
90	Antiviral and Neuroprotective Role of Octaguanidinium Dendrimer-Conjugated Morpholino Oligomers in Japanese Encephalitis. PLoS Neglected Tropical Diseases, 2010, 4, e892.	1.3	43

#	Article	IF	CITATIONS
91	Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. Journal of Neuroinflammation, 2010, 7, 68.	3.1	85
92	Neurons under viral attack: Victims or warriors?. Neurochemistry International, 2010, 56, 727-735.	1.9	37
93	Cytokines and chemokines in viral encephalitis: A clinicoradiological correlation. Neuroscience Letters, 2010, 473, 48-51.	1.0	34
94	A study of cytokines in tuberculous meningitis: Clinical and MRI correlation. Neuroscience Letters, 2010, 483, 6-10.	1.0	52
95	Protective effects of interleukin-6 in lipopolysaccharide (LPS)-induced experimental endotoxemia are linked to alteration in hepatic anti-oxidant enzymes and endogenous cytokines. Immunobiology, 2010, 215, 443-451.	0.8	38
96	Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection. Immunobiology, 2010, 215, 884-893.	0.8	53
97	Japanese Encephalitis Virus Induce Immuno-Competency in Neural Stem/Progenitor Cells. PLoS ONE, 2009, 4, e8134.	1.1	34
98	Japanese Encephalitis—A Pathological and Clinical Perspective. PLoS Neglected Tropical Diseases, 2009, 3, e437.	1.3	249
99	Curcumin Protects Neuronal Cells from Japanese Encephalitis Virus-Mediated Cell Death and also Inhibits Infective Viral Particle Formation by Dysregulation of Ubiquitin–Proteasome System. Journal of NeuroImmune Pharmacology, 2009, 4, 328-337.	2.1	100
100	Tobacco carcinogen induces microglial activation and subsequent neuronal damage. Journal of Neurochemistry, 2009, 110, 1070-1081.	2.1	55
101	Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: Correlation with membrane fluidity and cell death. Neurochemistry International, 2009, 54, 464-470.	1.9	72
102	Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: Correlation with minocycline administration as a therapeutic agent. Neurochemistry International, 2009, 55, 717-723.	1.9	69
103	Modulation of Steroidogenic Enzymes in Murine Lymphoid Organs After Immune Activation. Immunological Investigations, 2009, 38, 14-30.	1.0	3
104	Inflammation: A new candidate in modulating adult neurogenesis. Journal of Neuroscience Research, 2008, 86, 1199-1208.	1.3	195
105	Ciliary neurotrophic factor and interleukinâ€6 differentially activate microglia. Journal of Neuroscience Research, 2008, 86, 1538-1547.	1.3	58
106	Japanese encephalitis virus differentially modulates the induction of multiple proâ€inflammatory mediators in human astrocytoma and astroglioma cellâ€lines. Cell Biology International, 2008, 32, 1506-1513.	1.4	36
107	Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. Journal of Neurochemistry, 2008, 105, 1582-1595.	2.1	146
108	Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation. Journal of Neurochemistry, 2008, 106, 1624-1636.	2.1	76

#	Article	IF	CITATIONS
109	Present perspectives on flaviviral chemotherapy. Drug Discovery Today, 2008, 13, 619-624.	3.2	23
110	Japanese Encephalitis Virus infection induces IL-18 and IL-1β in microglia and astrocytes: Correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. Journal of Neuroimmunology, 2008, 195, 60-72.	1.1	98
111	Therapeutic effect of a novel anilidoquinoline derivative, 2-(2-methyl-quinoline-4ylamino)-N-(2-chlorophenyl)-acetamide, in Japanese encephalitis: correlation with in vitro neuroprotection. International Journal of Antimicrobial Agents, 2008, 32, 349-354.	1.1	33
112	Tumor necrosis factor receptor-associated death domain mediated neuronal death contributes to the glial activation and subsequent neuroinflammation in Japanese encephalitis. Neurochemistry International, 2008, 52, 1310-1321.	1.9	49
113	Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. Journal of Antimicrobial Chemotherapy, 2008, 61, 679-688.	1.3	99
114	Modulation of interleukin-1β mediated inflammatory response in human astrocytes by flavonoids: Implications in neuroprotection. Brain Research Bulletin, 2007, 73, 55-63.	1.4	187
115	Neuroprotection conferred by astrocytes is insufficient to protect animals from succumbing to Japanese encephalitis. Neurochemistry International, 2007, 50, 764-773.	1.9	45
116	Induction of IP-10 (CXCL10) in astrocytes following Japanese encephalitis. Neuroscience Letters, 2007, 414, 45-50.	1.0	72
117	Japanese encephalitis virus infection decrease endogenous IL-10 production: Correlation with microglial activation and neuronal death. Neuroscience Letters, 2007, 420, 144-149.	1.0	56
118	Antiviral and Anti-Inflammatory Effects of Rosmarinic Acid in an Experimental Murine Model of Japanese Encephalitis. Antimicrobial Agents and Chemotherapy, 2007, 51, 3367-3370.	1.4	203
119	Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Clia, 2007, 55, 483-496.	2.5	344
120	Tumor necrosis factor receptorâ€1â€induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. Journal of Neurochemistry, 2007, 103, 771-783.	2.1	65
121	Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury. Journal of Neuroinflammation, 2006, 3, 15.	3.1	50
122	Interleukin-1 and the Interleukin-1 Type 1 Receptor are Essential for the Progressive Neurodegeneration that Ensues Subsequent to a Mild Hypoxic/Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 17-29.	2.4	103
123	Neuroinflammation and Both Cytotoxic and Vasogenic Edema Are Reduced in Interleukin-1 Type 1 Receptor-Deficient Mice Conferring Neuroprotection. Stroke, 2005, 36, 2226-2231.	1.0	74
124	Minocycline Reduces Proinflammatory Cytokine Expression, Microglial Activation, and Caspase-3 Activation in a Rodent Model of Diabetic Retinopathy. Diabetes, 2005, 54, 1559-1565.	0.3	485
125	Interleukin-1: A master regulator of neuroinflammation. Journal of Neuroscience Research, 2004, 78, 151-156.	1.3	326
126	Astrocytic ceruloplasmin expression, which is induced by IL-1? and by traumatic brain injury, increases in the absence of the IL-1 type 1 receptor. Glia, 2003, 44, 76-84.	2.5	37

#	Article	IF	CITATIONS
127	Neural Stem Cells in the Subventricular Zone Are a Source of Astrocytes and Oligodendrocytes, but Not Microglia. Developmental Neuroscience, 2003, 25, 184-196.	1.0	33
128	Combination Therapy with Indolylquinoline Derivative and Sodium Antimony Gluconate Cures Established Visceral Leishmaniasis in Hamsters. Antimicrobial Agents and Chemotherapy, 2002, 46, 259-261.	1.4	15
129	The Type 1 Interleukin-1 Receptor Is Essential for the Efficient Activation of Microglia and the Induction of Multiple Proinflammatory Mediators in Response to Brain Injury. Journal of Neuroscience, 2002, 22, 6071-6082.	1.7	151
130	Differential expression of protein tyrosine kinase genes during microglial activation. Glia, 2002, 40, 11-24.	2.5	32
131	Transforming growth factor ?1 prevents IL-1?-induced microglial activation, whereas TNF?- and IL-6-stimulated activation are not antagonized. Glia, 2002, 40, 109-120.	2.5	78
132	Synthesis of a novel quinoline derivative, 2-(2-methylquinolin-4-ylamino)-N-phenylacetamide—a potential antileishmanial agent. Bioorganic and Medicinal Chemistry, 2002, 10, 1687-1693.	1.4	94
133	Modulation of CD11C+ splenic dendritic cell functions in murine visceral leishmaniasis: correlation with parasite replication in the spleen. Immunology, 2000, 99, 305-313.	2.0	28
134	Peripheral blood mononuclear cells of patients with Indian visceral leishmaniasis suppress natural killer cell activity in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1996, 90, 582-585.	0.7	3
135	Cerebrospinal Fluid Biomarkers of Japanese Encephalitis. F1000Research, 0, 4, 334.	0.8	0