Shu-Yan Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4885183/publications.pdf

Version: 2024-02-01

31	897	18	30
papers	citations	h-index	g-index
31	31	31	913
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hierarchical self-assembly and packing models of dipalladium(II,II)-based metallacapsules and metallacages based on amide-functionalized multi-pyrazoles. Inorganic Chemistry Communication, 2022, 136, 109145.	3.9	2
2	Highly specific and selective fluorescent chemosensor for sensing of Hg(II) by NH-pyrazolate-functionalized AlEgens. Analytica Chimica Acta, 2022, 1208, 339824.	5.4	16
3	Tuning the Size and Geometry of Pd(II)-Based Metallacalixarenes by Varying the N-Containing Ligands: Synthesis, Structure, and Sensing Properties. Crystal Growth and Design, 2022, 22, 3740-3752.	3.0	1
4	Self-assembly of novel copper(II) macrocyclic and luminescent europium(III) triple-stranded supramolecules with new anthracene-based bis- \hat{l}^2 -diketonate ligands. Inorganic Chemistry Communication, 2021, 128, 108574.	3.9	1
5	Design and programmable self-assembly of an eight-coordinate Cu(<scp>ii</scp>) heterometallic structure <i>via</i>) a dipalladium corner as a building block. CrystEngComm, 2020, 22, 8166-8170.	2.6	2
6	From <i>Metalâ€Metal Bonding</i> to <i>Supraâ€Metalâ€Metal Bonding</i> Directed Selfâ€Assembly: Supramolecular Architectures of Group 10 and 11 Metals with Ligands from Mono―to Polyâ€Pyrazoles. Israel Journal of Chemistry, 2019, 59, 166-183.	2.3	13
7	Controlled Synthesis of Supramolecular Architectures of Homo- and Heterometallic Complexes by Programmable Self-Assembly. Crystal Growth and Design, 2019, 19, 30-39.	3.0	15
8	Programmable Selfâ€Assembly of Heterometallic Palladium(II)–Copper(II) 1D Grid hain using Dinuclear Palladium(II) Corners with Pyrazole–Carboxylic Acid Ligands. Chemistry - an Asian Journal, 2018, 13, 1108-1113.	3.3	13
9	Self-assembly of a Pd-based molecular bowl as anion receptor featured by multiple C H···anion hydrogen bonds. Inorganic Chemistry Communication, 2018, 91, 24-28.	3.9	7
10	Selfâ€Assembly and Câ´'Hâ‹â‹â‹Anion Hydrogen Bonding of Palladium(II)â€based Metallacalixarenes Using Por Phenylâ€Bridged Diâ€Naphthoimidazoles. Chemistry - an Asian Journal, 2018, 13, 3173-3179.	yridyl―	4
11	Selfâ€Assembly of Waterâ€Soluble Platinum(II)â€Based Metallacalixarenes and Tuning Their Conformational Interconversion via Synergistic Effects between Solvents and Anions. Chemistry - an Asian Journal, 2018, 13, 2805-2811.	3.3	9
12	Self-assembly and anion sensing of metal–organic [M ₆ L ₂] cages from fluorescent triphenylamine tri-pyrazoles with dipalladium(<scp>ii</scp> , <scp>ii</scp>) corners. Dalton Transactions, 2017, 46, 5801-5805.	3.3	23
13	Programmable self-assembly of water-soluble organo-heterometallic cages [M ₁₂ M′ ₄ L ₁₂] using 3-(3,5-dimethyl-1H-pyrazol-4-yl)pentane-2,4-dione (H ₂ L). Chemical Communications, 2017, 53, 4238-4241.	4.1	24
14	Hydrolytic cleavage of both CS2 carbon–sulfur bonds by multinuclear Pd(II) complexes at room temperature. Nature Chemistry, 2017, 9, 188-193.	13.6	57
15	Self-assembly of tri-pyrazolate linked cages with di-palladium coordination motifs. Dalton Transactions, 2014, 43, 16015-16024.	3.3	11
16	From {Au ^I ···Au ^I }-Coupled Cages to the Cage-Built 2-D {Au ^I ···Au ^I Bonding Interaction Driver Self-Assembly and Their Ag ^I Sensing and Photo-Switchable Behavior. Journal of the American Chemical Society, 2014, 136, 10921-10929.	¹ 13.7	102
17	Tetrapyrazolyl-calix[4]arene-based supramolecular architectures from [Pd16L4] macrocycle to three-dimensional microporous channels. Inorganic Chemistry Communication, 2014, 43, 98-100.	3.9	6
18	Self-assembly of metallomacrocycles with dipyrazole ligands and anion sensing of [Pd ₄ Fe ₂] macrocycle with ferrocene-based dipyrazole ligand. Dalton Transactions, 2013, 42, 3447-3454.	3.3	18

#	Article	IF	CITATION
19	Self-Assembly of [M8L4] and [M4L2] Fluorescent Metallomacrocycles with Carbazole-Based Dipyrazole Ligands. Inorganic Chemistry, 2012, 51, 2443-2453.	4.0	31
20	Programmable self-assembly of homo- or hetero-metallomacrocycles using 4-(1H-pyrazolyl-4-yl)pyridine. Chemical Communications, 2012, 48, 5343.	4.1	49
21	Fine‶uning Conformational Motion of a Selfâ€Assembled Metal–Organic Macrocycle by Multiple CHâ‹â‹â‹Anion Hydrogen Bonds. Angewandte Chemie - International Edition, 2012, 51, 1177-1181.	13.8	43
22	Synthesis and Anion Sensing of Water-Soluble Metallomacrocycles. Inorganic Chemistry, 2011, 50, 6055-6062.	4.0	48
23	Self-Assembly and Hostâ^'Guest Interaction of Metallomacrocycles Using Fluorescent Dipyrazole Linker with Dimetallic Clips. Inorganic Chemistry, 2010, 49, 7783-7792.	4.0	47
24	Self-Assembly, Structures, and Photophysical Properties of 4,4′-Bipyrazolate-Linked Metallo-Macrocycles with Dimetal Clips. Inorganic Chemistry, 2008, 47, 2142-2154.	4.0	47
25	Self-Assembly of Tripyrazolate-Linked Macrotricyclic M12L4Cages with Dimetallic Clips. Organic Letters, 2007, 9, 1379-1382.	4.6	43
26	Design and Synthesis of Polypyrazolyl Compounds as a New Type of Versatile Building Blocksâ€. Chinese Journal of Chemistry, 2006, 24, 1225-1229.	4.9	21
27	Novel pyrazolate-bridged dinuclear Pd(II) diimine complexes that bind inorganic anions. Inorganic Chemistry Communication, 2005, 8, 656-660.	3.9	34
28	Molecular Self-Assembly with Modularization and Directionality: Vector-Manipulation at Metal Centers. Current Organic Chemistry, 2005, 9, 555-563.	1.6	29
29	Solution Self-Assembly, Spontaneous Deprotonation, and Crystal Structures of Bipyrazolate-Bridged Metallomacrocycles with Dimetal Centersâ€. Inorganic Chemistry, 2005, 44, 9471-9488.	4.0	76
30	A Calix[4]arene Carceplex with Four Rh24+Fasteners. Journal of the American Chemical Society, 2004, 126, 1518-1525.	13.7	75
31	A dimer-to-dimer metal–metal linear aggregate from a (Âμ-1,3-NO3)2 double-bridged cis-(2 2â€2-bipyridine)palladium(ii) cofacial dimer. Dalton Transactions RSC 2001 3415-3416	2.3	30