## Leonardo Chamorro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4884837/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects.<br>Boundary-Layer Meteorology, 2009, 132, 129-149.                                                                                                 | 1.2  | 393       |
| 2  | Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine<br>Wakes: A Wind-Tunnel Study. Boundary-Layer Meteorology, 2010, 136, 515-533.                                                             | 1.2  | 223       |
| 3  | On the interaction between a turbulent open channel flow and an axial-flow turbine. Journal of Fluid<br>Mechanics, 2013, 716, 658-670.                                                                                                   | 1.4  | 183       |
| 4  | Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study. Energies, 2011, 4, 1916-1936.                                                                                                                                          | 1.6  | 142       |
| 5  | Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. Extreme Mechanics Letters, 2020, 40, 100924.                                                               | 2.0  | 123       |
| 6  | Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature, 2021, 597, 503-510.                                                                                                                                   | 13.7 | 120       |
| 7  | Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine. Nature Communications, 2014, 5, 4216.                                                                                                         | 5.8  | 99        |
| 8  | Turbulent Flow Properties Around a Staggered Wind Farm. Boundary-Layer Meteorology, 2011, 141, 349-367.                                                                                                                                  | 1.2  | 96        |
| 9  | Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies. Renewable Energy, 2013, 50, 1095-1105.                                                                            | 4.3  | 85        |
| 10 | Turbulence effects on a fullâ€scale 2.5 MW horizontalâ€axis wind turbine under neutrally stratified conditions. Wind Energy, 2015, 18, 339-349.                                                                                          | 1.9  | 75        |
| 11 | On the evolution of turbulent scales in the wake of a wind turbine model. Journal of Turbulence, 2012, 13, N27.                                                                                                                          | 0.5  | 58        |
| 12 | Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home<br>settings for COVID-19 patients. Proceedings of the National Academy of Sciences of the United States<br>of America, 2021, 118, . | 3.3  | 52        |
| 13 | Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison.<br>Renewable Energy, 2013, 60, 1-6.                                                                                                  | 4.3  | 49        |
| 14 | Characterizing the response of a wind turbine model under complex inflow conditions. Wind Energy, 2015, 18, 729-743.                                                                                                                     | 1.9  | 48        |
| 15 | Spectral behaviour of the turbulence-driven power fluctuations of wind turbines. Journal of<br>Turbulence, 2015, 16, 832-846.                                                                                                            | 0.5  | 47        |
| 16 | An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine. Energies, 2015, 8, 11955-11972.                                                                                                      | 1.6  | 46        |
| 17 | Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations. Applied Energy, 2019, 253, 113605.                                                                                                         | 5.1  | 46        |
| 18 | Local Scour around a Model Hydrokinetic Turbine in an Erodible Channel. Journal of Hydraulic<br>Engineering, 2014, 140, .                                                                                                                | 0.7  | 44        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact of height heterogeneity on canopy turbulence. Journal of Fluid Mechanics, 2017, 813, 1176-1196.                                                                          | 1.4 | 44        |
| 20 | Velocity and Surface Shear Stress Distributions Behind a Rough-to-Smooth Surface Transition: A<br>Simple New Model. Boundary-Layer Meteorology, 2009, 130, 29-41.               | 1.2 | 43        |
| 21 | Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine.<br>Experiments in Fluids, 2013, 54, 1.                                         | 1.1 | 39        |
| 22 | Effects of Freestream Turbulence in a Model Wind Turbine Wake. Energies, 2016, 9, 830.                                                                                          | 1.6 | 39        |
| 23 | Effects of energetic coherent motions on the power and wake of an axial-flow turbine. Physics of Fluids, 2015, 27, .                                                            | 1.6 | 37        |
| 24 | Wind-tunnel study of surface boundary conditions for large-eddy simulation of turbulent flow past<br>a rough-to-smooth surface transition. Journal of Turbulence, 2010, 11, N1. | 0.5 | 32        |
| 25 | Turbulent boundary layer over 2D and 3D large-scale wavy walls. Physics of Fluids, 2015, 27, .                                                                                  | 1.6 | 29        |
| 26 | Towards uncovering the structure of power fluctuations of wind farms. Physical Review E, 2017, 96, 063117.                                                                      | 0.8 | 28        |
| 27 | Variableâ€ <b>s</b> ized wind turbines are a possibility for wind farm optimization. Wind Energy, 2014, 17, 1483-1494.                                                          | 1.9 | 27        |
| 28 | Heat conduction in porcine muscle and blood: experiments and time-fractional telegraph equation model. Journal of the Royal Society Interface, 2019, 16, 20190726.              | 1.5 | 25        |
| 29 | Fractional Flow Speed-Up from Porous Windbreaks for Enhanced Wind-Turbine Power.<br>Boundary-Layer Meteorology, 2017, 163, 253-271.                                             | 1.2 | 24        |
| 30 | Engineered bio-inspired coating for passive flow control. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1210-1214.                | 3.3 | 23        |
| 31 | On the Evolution of the Integral Time Scale within Wind Farms. Energies, 2018, 11, 93.                                                                                          | 1.6 | 23        |
| 32 | Flow-induced oscillations of low-aspect-ratio flexible plates with various tip geometries. Physics of Fluids, 2018, 30, 097102.                                                 | 1.6 | 22        |
| 33 | A Comparative Analysis on the Response of a Wind-Turbine Model to Atmospheric and Terrain Effects.<br>Boundary-Layer Meteorology, 2016, 158, 229-255.                           | 1.2 | 21        |
| 34 | Vortical structures in the near wake of tabs with various geometries. Journal of Fluid Mechanics, 2017, 825, 167-188.                                                           | 1.4 | 21        |
| 35 | On the couple dynamics of wall-mounted flexible plates in tandem. Journal of Fluid Mechanics, 2018, 852, .                                                                      | 1.4 | 20        |
| 36 | Spectral energy cascade of body rotations and oscillations under turbulence. Physical Review E, 2016, 94, 063105.                                                               | 0.8 | 18        |

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Flow-induced motions of flexible plates: fluttering, twisting and orbital modes. Journal of Fluid<br>Mechanics, 2019, 864, 273-285.                             | 1.4 | 18        |
| 38 | Detection of tip-vortex signatures behind a 2.5 MW wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 143, 105-112.                   | 1.7 | 16        |
| 39 | On the dynamics of air bubbles in Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2020, 891, .                                                          | 1.4 | 16        |
| 40 | Nonâ€uniform velocity distribution effect on the Betz–Joukowsky limit. Wind Energy, 2013, 16, 279-282.                                                          | 1.9 | 15        |
| 41 | Taking a Stab at Quantifying the Energetics of Biological Puncture. Integrative and Comparative Biology, 2019, 59, 1586-1596.                                   | 0.9 | 15        |
| 42 | Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.<br>Journal of Visualized Experiments, 2016, , 53745.           | 0.2 | 14        |
| 43 | Flow around a semicircular cylinder with passive flow control mechanisms. Experiments in Fluids, 2017, 58, 1.                                                   | 1.1 | 14        |
| 44 | Interaction of low-level jets with wind turbines: On the basic mechanisms for enhanced performance.<br>Journal of Renewable and Sustainable Energy, 2020, 12, . | 0.8 | 14        |
| 45 | On the dynamics of a model wind turbine under passive tower oscillations. Applied Energy, 2022, 311, 118608.                                                    | 5.1 | 14        |
| 46 | Influence of vortical structure impingement on the oscillation and rotation of flat plates. Journal of Fluids and Structures, 2017, 70, 417-427.                | 1.5 | 13        |
| 47 | On the transient dynamics of the wake and trajectory of free falling cones with various apex angles.<br>Experiments in Fluids, 2015, 56, 1.                     | 1.1 | 12        |
| 48 | Turbulence coherence and its impact on wind-farm power fluctuations. Journal of Fluid Mechanics, 2018, 855, 1116-1129.                                          | 1.4 | 12        |
| 49 | On streamwise velocity spectra models with fractal and long-memory effects. Physics of Fluids, 2021, 33, 035116.                                                | 1.6 | 12        |
| 50 | On the distinct drag, reconfiguration and wake of perforated structures. Journal of Fluid Mechanics, 2020, 890, .                                               | 1.4 | 12        |
| 51 | Instability-driven frequency decoupling between structure dynamics and wake fluctuations. Physical Review Fluids, 2018, 3, .                                    | 1.0 | 12        |
| 52 | On the Wind Turbine Wake and Forest Terrain Interaction. Energies, 2021, 14, 7204.                                                                              | 1.6 | 12        |
| 53 | Transition to turbulence over 2D and 3D periodic large-scale roughnesses. Journal of Fluid<br>Mechanics, 2016, 804, .                                           | 1.4 | 11        |
| 54 | In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays.<br>Applied Energy, 2020, 269, 114921.                       | 5.1 | 11        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Lagrangian acceleration in Rayleigh-Bénard convection at various aspect ratios. Physical Review Fluids, 2018, 3, .                                                           | 1.0 | 11        |
| 56 | Local topographyâ€induced pressure gradient effects on the wake and power output of a model wind turbine. Theoretical and Applied Mechanics Letters, 2021, 11, 100297.       | 1.3 | 10        |
| 57 | Exploring wind farms with alternating two- and three-bladed wind turbines. Renewable Energy, 2019, 138, 764-774.                                                             | 4.3 | 9         |
| 58 | Lagrangian description of the unsteady flow induced by a single pulse of a jellyfish. Physical Review<br>Fluids, 2019, 4, .                                                  | 1.0 | 9         |
| 59 | On the design of particle filters inspired by animal noses. Journal of the Royal Society Interface, 2022, 19, 20210849.                                                      | 1.5 | 9         |
| 60 | Turbulent boundary layer response to large-scale wavy topographies. Physics of Fluids, 2017, 29,<br>065113.                                                                  | 1.6 | 8         |
| 61 | Passive pitching of splitters in the trailing edge of elliptic cylinders. Journal of Fluid Mechanics, 2017, 826, 363-375.                                                    | 1.4 | 8         |
| 62 | Windbreak Effects Within Infinite Wind Farms. Energies, 2017, 10, 1140.                                                                                                      | 1.6 | 8         |
| 63 | On the acoustic fountain types and flow induced with focused ultrasound. Journal of Fluid Mechanics, 2021, 909, .                                                            | 1.4 | 8         |
| 64 | On the scale-to-scale coupling between a full-scale wind turbine and turbulence. Journal of Turbulence, 2015, 16, 617-632.                                                   | 0.5 | 7         |
| 65 | Modulation of aerodynamic force on a 2D elliptic body via passive splitter pitching under high turbulence. Journal of Fluids and Structures, 2017, 74, 205-213.              | 1.5 | 7         |
| 66 | On the effect of orifice thickness and divergence angle in the near and intermediate fields of axisymmetric jets. Experimental Thermal and Fluid Science, 2021, 123, 110293. | 1.5 | 7         |
| 67 | Free fall of homogeneous and heterogeneous cones. Physical Review Fluids, 2020, 5, .                                                                                         | 1.0 | 7         |
| 68 | On the turbulence dynamics induced by a surrogate seagrass canopy. Journal of Fluid Mechanics, 2022, 934, .                                                                  | 1.4 | 7         |
| 69 | On the near-wall effects induced by an axial-flow rotor. Renewable Energy, 2016, 91, 524-530.                                                                                | 4.3 | 6         |
| 70 | On the Kelvin–Helmholtz and von Kármán vortices in the near-wake of semicircular cylinders with<br>flaps. Journal of Turbulence, 2018, 19, 61-71.                            | 0.5 | 5         |
| 71 | Flow modulation by a mushroom-like coating around the separation region of a wind-turbine airfoil section. Journal of Renewable and Sustainable Energy, 2018, 10, .          | 0.8 | 5         |
| 72 | Exceeding ohmic scaling by more than one order of magnitude with a 3D ion concentration polarization system. Lab on A Chip, 2021, 21, 3094-3104.                             | 3.1 | 5         |

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fog Formation Related to Gravity Currents Interacting with Coastal Topography. Boundary-Layer Meteorology, 2021, 181, 499.                                    | 1.2 | 5         |
| 74 | On the dynamics of three-dimensional slung prisms under very low and high turbulence flows.<br>Journal of Fluid Mechanics, 2017, 816, 468-480.                | 1.4 | 4         |
| 75 | Turbulence-driven reverse lift on two-dimensional and three-dimensional structures. Physical Review<br>E, 2018, 98, .                                         | 0.8 | 4         |
| 76 | Turbulent boundary layer around 2D permeable and impermeable obstacles. Experiments in Fluids, 2018,<br>59, 1.                                                | 1.1 | 4         |
| 77 | Active pitching of short splitters past a cylinder: Drag increase and wake. Physical Review E, 2019, 100, 063106.                                             | 0.8 | 4         |
| 78 | Modulation of turbulence scales passing through the rotor of a wind turbine. Journal of Turbulence, 2019, 20, 21-31.                                          | 0.5 | 4         |
| 79 | Impact of Topographic Steps in the Wake and Power of a Wind Turbine: Part A—Statistics. Energies,<br>2020, 13, 6411.                                          | 1.6 | 4         |
| 80 | Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness. Physical Review Fluids, 2018, 3, .                     | 1.0 | 4         |
| 81 | Impact of gaps on the flow statistics in an emergent rigid canopy. Physics of Fluids, 2022, 34, .                                                             | 1.6 | 4         |
| 82 | Experimental and Numerical Visualization of Counter Rotating Vortices. Journal of Heat Transfer, 2016, 138, .                                                 | 1.2 | 3         |
| 83 | On the Dynamics of Flexible Plates under Rotational Motions. Energies, 2018, 11, 3384.                                                                        | 1.6 | 3         |
| 84 | Spatiotemporal Correlations in the Power Output of Wind Farms: On the Impact of Atmospheric Stability. Energies, 2019, 12, 1486.                              | 1.6 | 3         |
| 85 | Dynamics of flexible plates and flow under impulsive oscillation. Journal of Fluids and Structures, 2019, 87, 319-333.                                        | 1.5 | 3         |
| 86 | Exploring the effects of low-level-jets on the energy entrainment of vertical-axis wind turbines.<br>Journal of Renewable and Sustainable Energy, 2021, 13, . | 0.8 | 3         |
| 87 | A fast, non-iterative ray-intersection approach for three-dimensional microscale particle tracking. Lab<br>on A Chip, 2022, 22, 964-971.                      | 3.1 | 3         |
| 88 | On the impact of layout in the dynamics of wind turbine arrays under passive oscillations. Journal of<br>Renewable and Sustainable Energy, 0, , .             | 0.8 | 3         |
| 89 | On the submerged low-Cauchy-number canopy dynamics under unidirectional flows. Journal of Fluids and Structures, 2022, 113, 103646.                           | 1.5 | 3         |
| 90 | Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms. Energies, 2020, 13, 1810.                                                      | 1.6 | 2         |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | On the multiscale oscillations of a hinged plate under stratified coherent motions. Journal of Fluids and Structures, 2020, 94, 102944.                              | 1.5 | 2         |
| 92  | On the H-type transition to turbulence—Laboratory experiments and reduced-order modeling. Physics of Fluids, 2021, 33, .                                             | 1.6 | 2         |
| 93  | Effect of the aspect ratio on the dynamics of air bubbles within Rayleigh–Bénard convection. Physics of Fluids, 2021, 33, .                                          | 1.6 | 2         |
| 94  | On the Unsteady Wake of a Rigid Plate Under Constant Acceleration and Deceleration. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .            | 0.8 | 2         |
| 95  | Dynamics of an oil-coated bubble rising in a quiescent water medium. Physical Review Fluids, 2022, 7, .                                                              | 1.0 | 2         |
| 96  | Channel Bed Slope Effect on the Height of Gravity Waves Produced by a Sudden Downstream<br>Discharge Stoppage. Journal of Hydraulic Engineering, 2010, 136, 328-330. | 0.7 | 1         |
| 97  | Characterisation of the Eulerian and Lagrangian accelerations in the intermediate field of turbulent circular jets. Journal of Turbulence, 2017, 18, 87-102.         | 0.5 | 1         |
| 98  | On the large- and small-scale motions in a separated, turbulent-boundary-layer flow. Journal of Turbulence, 2019, 20, 563-576.                                       | 0.5 | 1         |
| 99  | On the large-scale streaks in the logarithmic layer of wall-bounded flows. Journal of Visualization, 0, , 1.                                                         | 1.1 | 1         |
| 100 | Spectral features of the wake and power fluctuations of model wind turbines under low-level jets.<br>Journal of Renewable and Sustainable Energy, 0, , .             | 0.8 | 1         |
| 101 | On the multi-scale turbulent structure interactions within wind farms. Journal of Physics:<br>Conference Series, 2020, 1618, 062052.                                 | 0.3 | 0         |
| 102 | Bacterias endófitas promotoras de crecimiento aisladas de pasto colosoana, departamento de Sucre,<br>Colombia. Revista MVZ Cordoba, 0, , 6696-6709.                  | 0.2 | 0         |
| 103 | Characterization of the Flow and Surface Temperature Around Multiple Vortex Generators. Journal of Fluids Engineering, Transactions of the ASME, 2022, 144, .        | 0.8 | 0         |