
Stephen M Mudge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4884175/publications.pdf Version: 2024-02-01

STERHEN M MUDCE

#	Article	IF	CITATIONS
1	Providing first evidence of the behaviour and potential environmental impacts of an accidental underwater release of propane. Environmental Pollution, 2021, 276, 116683.	7.5	0
2	Determining the <scp>Bioâ€Based</scp> Carbon Content of Surfactants. Journal of Surfactants and Detergents, 2020, 23, 771-780.	2.1	1
3	Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study. Water (Switzerland), 2020, 12, 3076.	2.7	4
4	Using elemental analyses and multivariate statistics to identify the off-site dispersion from informal e-waste processing. Environmental Sciences: Processes and Impacts, 2019, 21, 2042-2057.	3.5	3
5	Contributions of dioxins and furans to the urban sediment signature: The role of atmospheric particles. Science of the Total Environment, 2018, 615, 751-760.	8.0	7
6	Permafrost – receptor or source?. Environmental Forensics, 2018, 19, 165-165.	2.6	0
7	A comparison between three unmixing models for source apportionment of PM _{2.5} using alkanes in air from Southern Chile. Environmental Forensics, 2017, 18, 226-240.	2.6	4
8	Source Apportionment of PAHs in Airborne Particulates (PM2.5) in Southern Chile. Polycyclic Aromatic Compounds, 2017, 37, 189-202.	2.6	11
9	Source identification, apportionment and toxicity of indoor and outdoor PM _{2.5} airborne particulates in a region characterised by wood burning. Environmental Sciences: Processes and Impacts, 2016, 18, 575-589.	3.5	8
10	Statistical analysis of oil spill chemical composition data. , 2016, , 849-867.		2
11	Multivariate Statistical Methods andÂSource Identification in Environmental Forensics. , 2015, , 655-675.		3
12	The effect of secondary treatment and eco-region on the environmental fate of fatty alcohol based surfactants. Science of the Total Environment, 2014, 470-471, 835-843.	8.0	4
13	Estimating fatty alcohol contributions to the environment from laundry and personal care products using a market forensics approach. Environmental Sciences: Processes and Impacts, 2014, 16, 74-80.	3.5	7
14	An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuarine, Coastal and Shelf Science, 2014, 140, 95-122.	2.1	275
15	Seasonal Variation of Disinfection By-products in Drinking Water in Central Chile. Water Quality, Exposure, and Health, 2013, 5, 1-9.	1.5	4
16	Application of response surface methodology to oil spill remediation. Fuel, 2013, 103, 876-883.	6.4	20
17	Source Allocation of Aliphatic and Polycyclic Aromatic Hydrocarbons in Particulate-Phase (PM ₁₀) in the City of Valdivia, Chile. Polycyclic Aromatic Compounds, 2012, 32, 390-407.	2.6	14
18	Source apportionment in oil spill remediation. Journal of Environmental Monitoring, 2012, 14, 1671.	2.1	2

STEPHEN M MUDGE

#	Article	IF	CITATIONS
19	Quantifying the anthropogenic fraction of fatty alcohols in a terrestrial environment. Environmental Toxicology and Chemistry, 2012, 31, 1209-1222.	4.3	13
20	Use of Market Forensics to Estimate the Environmental Load of Ingredients from Consumer Products. Environmental Forensics, 2011, 12, 349-356.	2.6	8
21	What contribution do detergent fatty alcohols make to sewage discharges and the marine environment?. Journal of Environmental Monitoring, 2010, 12, 1846.	2.1	17
22	Trihalomethanes in the drinking water of Concepción and Talcahuano, Chile. Water and Environment Journal, 2009, 23, 286-292.	2.2	12
23	Milestone 100th issue sees evolution of JEM scope. Journal of Environmental Monitoring, 2009, 11, 1727.	2.1	1
24	Temporal trends and identification of the sources of volatile organic compounds in coastal seawater. Journal of Environmental Monitoring, 2009, 11, 628.	2.1	24
25	Sediment and Soil Environmental Forensics: What Do We Know?. , 2009, , 151-162.		1
26	Residence times in a hypersaline lagoon: Using salinity as a tracer. Estuarine, Coastal and Shelf Science, 2008, 77, 278-284.	2.1	46
27	Is the use of biofuels environmentally sound or ethical?. Journal of Environmental Monitoring, 2008, 10, 701.	2.1	4
28	Trace metals in sediments of Southeast Pacific Fjords, north region (42.5° to 46.5°S). Journal of Environmental Monitoring, 2008, 10, 231-238.	2.1	5
29	Concentration and Sources of Polycyclic Aromatic Hydrocarbons in Sediments from the Ria Formosa Lagoon. Environmental Forensics, 2007, 8, 231-243.	2.6	18
30	Temporal and Spatial Variation of Phytoplankton Pigments in the Western Part of Ria Formosa Lagoon, Southern Portugal. Environmental Forensics, 2007, 8, 205-220.	2.6	14
31	Analysis of volatile organic compounds (VOCs) in sediments using in situ SPME sampling. Journal of Environmental Monitoring, 2007, 9, 411.	2.1	23
32	Environmental Forensics in the UK. Journal of Environmental Monitoring, 2007, 9, 141.	2.1	1
33	Environmental forensics. Journal of Environmental Monitoring, 2007, 9, 395.	2.1	0
34	Oxygen depletion in relation to water residence times. Journal of Environmental Monitoring, 2007, 9, 1194.	2.1	24
35	Polycyclic aromatic hydrocarbons in clams Ruditapes decussatus (Linnaeus, 1758). Journal of Environmental Monitoring, 2007, 9, 187.	2.1	19
36	Multivariate Statistical Methods in Environmental Forensics. Environmental Forensics, 2007, 8, 155-163.	2.6	32

STEPHEN M MUDGE

#	Article	IF	CITATIONS
37	Oxidative stress in the clamRuditapes decussatus (Linnaeus, 1758) in relation to polycyclic aromatic hydrocarbon body burden. Environmental Toxicology, 2007, 22, 203-221.	4.0	22
38	The Use of Terminal Restriction Fragment Length Polymorphism (T-RFLP) for the Characterisation of Microbial Communities in Marine Sediments. Geomicrobiology Journal, 2006, 23, 247-251.	2.0	10
39	Source Allocation by Least-Squares Hydrocarbon Fingerprint Matching. Environmental Science & Technology, 2006, 40, 6561-6567.	10.0	20
40	Detection of technetium-99 in Ascophyllum nodosum from around the Welsh coast. Chemosphere, 2006, 65, 2297-2303.	8.2	12
41	Lagoon-sea exchanges, nutrient dynamics and water quality management of the Ria Formosa (Portugal). Estuarine, Coastal and Shelf Science, 2005, 62, 405-414.	2.1	99
42	Detecting Anthropogenic Stress in an Ecosystem: 3. Mesoscale Variability and Biotic Indices. Environmental Forensics, 2005, 6, 371-384.	2.6	8
43	Identifying the source, transport path and sinks of sewage derived organic matter. Environmental Pollution, 2005, 136, 209-220.	7.5	71
44	Detecting Anthropogenic Stress in an Ecosystem: 2. Macrofauna in a Sewage Gradient. Environmental Forensics, 2004, 5, 213-223.	2.6	15
45	Detecting Anthropogenic Stress In An Ecosystem: 1. Meiofauna In A Sewage Gradient. Environmental Forensics, 2004, 5, 155-170.	2.6	13
46	Dimethylsulphide and ocean–atmosphere interactions. Chemistry and Ecology, 2004, 20, 73-95.	1.6	8
47	Cleaning oiled shores: laboratory experiments testing the potential use of vegetable oil biodiesels. Chemosphere, 2004, 54, 297-304.	8.2	64
48	Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuarine, Coastal and Shelf Science, 2003, 57, 73-85.	2.1	127
49	Polymerisation versus degradation of sunflower oil spilled in the marine environments. Marine Pollution Bulletin, 2003, 46, 1078-1081.	5.0	6
50	Vegetable oil spills on salt marsh sediments; comparison between sunflower and linseed oils. Marine Environmental Research, 2003, 56, 367-385.	2.5	20
51	The Effect of Grain Size and Element Concentration in Identifying Contaminant Sources. Environmental Forensics, 2003, 4, 305-312.	2.6	10
52	Aspects of Hydrocarbon Fingerprinting Using PLS-New Data From Prince William Sound. Environmental Forensics, 2002, 3, 323-329.	2.6	10
53	Reassessment of the Hydrocarbons in Prince William Sound and the Gulf of Alaska:Â Identifying the Source Using Partial Least-Squares. Environmental Science & Technology, 2002, 36, 2354-2360.	10.0	59
54	Consequences of linseed oil spills in salt marsh sediments. Marine Pollution Bulletin, 2002, 44, 520-533.	5.0	21

STEPHEN M MUDGE

#	Article	IF	CITATIONS
55	Tracing Sewage in the Marine Environment: altered signatures in ConcepciÃ ³ n Bay, Chile. Water Research, 2001, 35, 4166-4174.	11.3	39
56	Organic Contamination of San Vicente Bay, Chile. Marine Pollution Bulletin, 1999, 38, 1011-1021.	5.0	70
57	Stimulating the Biodegradation of Crude Oil with Biodiesel Preliminary Results. Spill Science and Technology Bulletin, 1999, 5, 353-355.	0.4	75
58	Sterols in the Ria Formosa lagoon, Portugal. Water Research, 1999, 33, 1038-1048.	11.3	52
59	Bacterial Degradation of Vegetable Oils. Chemistry and Ecology, 1998, 14, 291-303.	1.6	14
60	Vegetable Oil Spills - Pollution Or Over-Cautiousness?. Chemistry and Ecology, 1998, 14, 259-263.	1.6	3
61	Trace Organic Matter in the Ria Formosa, Portugal. Chemistry and Ecology, 1998, 14, 265-277.	1.6	1
62	Sewage contamination following an accidental spillage in the Ria Formosa, Portugal. Marine Pollution Bulletin, 1997, 34, 163-170.	5.0	82
63	Can vegetable oils outlast mineral oils in the marine environment?. Marine Pollution Bulletin, 1997, 34, 213.	5.0	24
64	The effect of biodiesel on the rate of removal and weathering characteristics of crude oil within artificial sand columns. Spill Science and Technology Bulletin, 1997, 4, 17-33.	0.4	61
65	Lipid biomarkers in the Conwy Estuary (North Wales, U.K.): a comparison between fatty alcohols and sterols. Marine Chemistry, 1997, 57, 61-84.	2.3	113
66	Vegetable Oil Spills On Salt Marshes. Chemistry and Ecology, 1995, 10, 127-135.	1.6	23
67	Deleterious effects from accidental spillages of vegetable oils. Spill Science and Technology Bulletin, 1995, 2, 187-191.	0.4	30

68 Sewage. , 1964, , 35-53.

0