
Ai-Ling Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883794/publications.pdf Version: 2024-02-01

ALLINGLIN

#	Article	IF	CITATIONS
1	Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Scientific Reports, 2018, 8, 6670.	3.3	203
2	Chronic Rapamycin Restores Brain Vascular Integrity and Function Through NO Synthase Activation and Improves Memory in Symptomatic Mice Modeling Alzheimer's Disease. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1412-1421.	4.3	181
3	Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8446-8451.	7.1	180
4	Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 217-226.	4.3	126
5	How longevity research can lead to therapies for Alzheimer's disease: The rapamycin story. Experimental Gerontology, 2015, 68, 51-58.	2.8	104
6	Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome. Frontiers in Aging Neuroscience, 2017, 9, 298.	3.4	96
7	Complex IV-deficient <i>Surf1</i> â^'/â^ mice initiate mitochondrial stress responses. Biochemical Journal, 2014, 462, 359-371.	3.7	89
8	Multimodal bioimaging using a rare earth doped Gd2O2S:Yb/Er phosphor with upconversion luminescence and magnetic resonance properties. Journal of Materials Chemistry B, 2013, 1, 1561.	5.8	85
9	Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model. PLoS ONE, 2019, 14, e0221828.	2.5	78
10	Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 201-216.	4.3	69
11	Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiology of Aging, 2015, 36, 2296-2303.	3.1	65
12	β-amyloid and tau drive early Alzheimer's disease decline while glucose hypometabolism drives late decline. Communications Biology, 2020, 3, 352.	4.4	63
13	Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging, 2016, 8, 2814-2826.	3.1	62
14	Caloric Restriction Impedes Age-Related Decline of Mitochondrial Function and Neuronal Activity. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1440-1443.	4.3	60
15	Methylene Blue as a Cerebral Metabolic and Hemodynamic Enhancer. PLoS ONE, 2012, 7, e46585.	2.5	59
16	mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell, 2020, 19, e13057.	6.7	52
17	Bimodal imaging using neodymium doped gadolinium fluoride nanocrystals with near-infrared to near-infrared downconversion luminescence and magnetic resonance properties. Journal of Materials Chemistry B, 2013, 1, 5702.	5.8	50
18	Time-dependent correlation of cerebral blood flow with oxygen metabolism in activated human visual cortex as measured by fMRI. Neurolmage, 2009, 44, 16-22.	4.2	49

AI-LING LIN

#	Article	IF	CITATIONS
19	Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice. Frontiers in Aging Neuroscience, 2015, 7, 213.	3.4	48
20	Hypermetabolic State in the 7-Month-Old Triple Transgenic Mouse Model of Alzheimer'S Disease and the Effect of Lipoic Acid: A ¹³ C-NMR Study. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1749-1760.	4.3	40
21	Blood longitudinal (T 1) and transverse (T 2) relaxation time constants at 11.7 Tesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2012, 25, 245-249.	2.0	38
22	A Mild Traumatic Brain Injury in Mice Produces Lasting Deficits in Brain Metabolism. Journal of Neurotrauma, 2018, 35, 2435-2447.	3.4	36
23	Decreased <i>in vitro</i> Mitochondrial Function is Associated with Enhanced Brain Metabolism, Blood Flow, and Memory in Surfl-Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1605-1611.	4.3	35
24	What have novel imaging techniques revealed about metabolism in the aging brain?. Future Neurology, 2014, 9, 341-354.	0.5	35
25	mTOR drives cerebral blood flow and memory deficits in LDLR ^{â^'/â^'} mice modeling atherosclerosis and vascular cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 58-74.	4.3	35
26	Multimodal MRI Neuroimaging Biomarkers for Cognitive Normal Adults, Amnestic Mild Cognitive Impairment, and Alzheimer's Disease. Neurology Research International, 2012, 2012, 1-17.	1.3	26
27	APOE genotype-dependent pharmacogenetic responses to rapamycin for preventing Alzheimer's disease. Neurobiology of Disease, 2020, 139, 104834.	4.4	26
28	Targeting mitochondrial dysfunction in CNS injury using Methylene Blue; still a magic bullet?. Neurochemistry International, 2017, 109, 117-125.	3.8	21
29	Chronic Intermittent Hypoxia Induces Robust Astrogliosis in an Alzheimer's Disease-Relevant Mouse Model. Neuroscience, 2019, 398, 55-63.	2.3	20
30	Validation of VASO cerebral blood volume measurement with positron emission tomography. Magnetic Resonance in Medicine, 2011, 65, 744-749.	3.0	19
31	Microwave and magnetic (M2) proteomics of a mouse model of mild traumatic brain injury. Translational Proteomics, 2014, 3, 10-21.	1.2	19
32	Dynamic Image for 3D MRI Image Alzheimer's Disease Classification. Lecture Notes in Computer Science, 2020, , 355-364.	1.3	19
33	Resting-state regional cerebral blood flow during adolescence: Associations with initiation of substance use and prediction of future use disorders. Drug and Alcohol Dependence, 2015, 149, 40-48.	3.2	18
34	Blood Flow Deficits and Cerebrovascular Changes in a Dietary Model of Hyperhomocysteinemia. ASN Neuro, 2019, 11, 175909141986578.	2.7	17
35	Apolipoprotein E genotype-dependent nutrigenetic effects to prebiotic inulin for modulating systemic metabolism and neuroprotection in mice via gut-brain axis. Nutritional Neuroscience, 2021, , 1-11.	3.1	14
36	Functional evaluation of therapeutic response for a mouse model of medulloblastoma. Transgenic Research, 2010, 19, 829-840.	2.4	12

AI-LING LIN

#	Article	IF	CITATIONS
37	Neuroimaging Biomarkers of mTOR Inhibition on Vascular and Metabolic Functions in Aging Brain and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 225.	3.4	12
38	Advit: Vision Transformer On Multi-Modality Pet Images For Alzheimer Disease Diagnosis. , 2022, , .		11
39	Functional neuroimaging: a physiological perspective. Frontiers in Neuroenergetics, 2010, 2, .	5.3	9
40	Neuroimaging Biomarkers of Caloric Restriction on Brain Metabolic and Vascular Functions. Current Nutrition Reports, 2017, 6, 41-48.	4.3	9
41	Extended Middle Cerebral Artery Occlusion (MCAO) Model to Mirror Stroke Patients Undergoing Thrombectomy. Translational Stroke Research, 2021, , 1.	4.2	9
42	Cerebral Blood Volume Measurements – Gd_DTPA vs. VASO - and Their Relationship with Cerebral Blood Flow in Activated Human Visual Cortex. Open Neuroimaging Journal, 2011, 5, 90-95.	0.2	8
43	Human Gray and White Matter Metabolomics to Differentiate APOE and Stage Dependent Changes in Alzheimer's Disease. , 2021, 3, 397-412.		8
44	Caloric Restriction Alters Postprandial Responses of Essential Brain Metabolites in Young Adult Mice. Frontiers in Nutrition, 2019, 6, 90.	3.7	7
45	Exercise-mediated alteration of hippocampal Dicer mRNA and miRNAs is associated with lower BACE1 gene expression and Al²1-42 in female 3xTg-AD mice. Journal of Neurophysiology, 2020, 124, 1571-1577.	1.8	5
46	mTOR: Alzheimer's disease prevention for APOE4 carriers. Oncotarget, 2016, 7, 44873-44874.	1.8	5
47	Novel Calibrated Short TR Recovery (CaSTRR) Method for Brain-Blood Partition Coefficient Correction Enhances Gray-White Matter Contrast in Blood Flow Measurements in Mice. Frontiers in Neuroscience, 2019, 13, 308.	2.8	4
48	Brain–Blood Partition Coefficient and Cerebral Blood Flow in Canines Using Calibrated Short TR Recovery (CaSTRR) Correction Method. Frontiers in Neuroscience, 2019, 13, 1189.	2.8	4
49	Human APOE4 carriers show different metabolic signatures than APOE3 carriers throughout Alzheimer's disease development. Alzheimer's and Dementia, 2020, 16, e040423.	0.8	0
50	Gray and white matter metabolite differences in Alzheimer's disease and normal human brain tissue. Alzheimer's and Dementia, 2020, 16, e043940.	0.8	0
51	Metabolite differences in TDPâ€43 proteinopathy and control human brain tissue. Alzheimer's and Dementia, 2020, 16, e044199.	0.8	0
52	Metabolite differences in vascular dementia and control human brain tissue. Alzheimer's and Dementia, 2020, 16, e044230.	0.8	0
53	Title is missing!. , 2019, 14, e0221828.		0
54	Title is missing!. , 2019, 14, e0221828.		0

#	Article	IF	CITATIONS
55	Title is missing!. , 2019, 14, e0221828.		0
56	Title is missing!. , 2019, 14, e0221828.		0
57	Glucose Metabolism is a Better Marker for Predicting Clinical Alzheimer's Disease than Amyloid or Tau Journal of Cellular Immunology, 2022, 4, 15-18.	0.8	0