
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickelâ€Promoted Tungsten Carbide Catalysts. Angewandte Chemie - International Edition, 2008, 47, 8510-8513.	7.2	671
2	One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy and Environmental Science, 2012, 5, 6383-6390.	15.6	358
3	Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010, 46, 6935.	2.2	313
4	Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chemistry, 2016, 18, 342-359.	4.6	254
5	Selectivity Control for Cellulose to Diols: Dancing on Eggs. ACS Catalysis, 2017, 7, 1939-1954.	5.5	162
6	Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catalysis Today, 2009, 147, 77-85.	2.2	157
7	Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chemical Communications, 2012, 48, 7052.	2.2	152
8	Heterogeneous catalysts for CO ₂ hydrogenation to formic acid/formate: from nanoscale to single atom. Energy and Environmental Science, 2021, 14, 1247-1285.	15.6	152
9	Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts. Green Chemistry, 2012, 14, 614.	4.6	151
10	Transition metal carbide catalysts for biomass conversion: A review. Applied Catalysis B: Environmental, 2019, 254, 510-522.	10.8	149
11	Catalytic Conversion of Cellulose to Ethylene Glycol over a Lowâ€Cost Binary Catalyst of Raney Ni and Tungstic Acid. ChemSusChem, 2013, 6, 652-658.	3.6	132
12	Synthesis of 1,6-hexanediol from HMF over double-layered catalysts of Pd/SiO ₂ + Ir–ReO _x /SiO ₂ in a fixed-bed reactor. Green Chemistry, 2016, 18, 2175-2184.	4.6	127
13	Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol. Industrial & Engineering Chemistry Research, 2011, 50, 6601-6608.	1.8	119
14	Catalytic Conversion of Concentrated Glucose to Ethylene Glycol with Semicontinuous Reaction System. Industrial & Engineering Chemistry Research, 2013, 52, 9566-9572.	1.8	103
15	Upgrading ethanol to n-butanol over highly dispersed Ni–MgAlO catalysts. Journal of Catalysis, 2016, 344, 184-193.	3.1	103
16	Nickelâ€Promoted Tungsten Carbide Catalysts for Cellulose Conversion: Effect of Preparation Methods. ChemSusChem, 2012, 5, 939-944.	3.6	96
17	Versatile Nickel–Lanthanum(III) Catalyst for Direct Conversion of Cellulose to Glycols. ACS Catalysis, 2015, 5, 874-883.	5.5	92
18	Selectivity-Switchable Conversion of Cellulose to Glycols over Ni–Sn Catalysts. ACS Catalysis, 2016, 6, 191-201.	5.5	83

#	Article	IF	CITATIONS
19	Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Applied Catalysis B: Environmental, 2018, 224, 518-532.	10.8	83
20	Selective Production of 1,2â€Propylene Glycol from Jerusalem Artichoke Tuber using Ni–W ₂ C/AC Catalysts. ChemSusChem, 2012, 5, 932-938.	3.6	74
21	Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol. ChemSusChem, 2017, 10, 1390-1394.	3.6	73
22	One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: From fundamental discovery to potential commercialization. Chinese Journal of Catalysis, 2014, 35, 602-613.	6.9	72
23	Hierarchical Echinus-like Cu-MFI Catalysts for Ethanol Dehydrogenation. ACS Catalysis, 2020, 10, 13624-13629.	5.5	63
24	Unlock the Compact Structure of Lignocellulosic Biomass by Mild Ball Milling for Ethylene Glycol Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 679-687.	3.2	62
25	Selective Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde over SiO2 Supported Nickel Phosphide Catalysts. Catalysis Letters, 2008, 124, 219-225.	1.4	56
26	Title is missing!. Catalysis Letters, 2002, 79, 21-25.	1.4	55
27	Catalytic conversion of concentrated miscanthus in water for ethylene glycol production. AICHE Journal, 2014, 60, 2254-2262.	1.8	53
28	Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts. Applied Catalysis B: Environmental, 2018, 239, 300-308.	10.8	49
29	Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass. Bioresource Technology, 2015, 175, 424-429.	4.8	48
30	Catalytic Conversion of Carbohydrates to Methyl Lactate Using Isolated Tin Sites in SBAâ€15. ChemistrySelect, 2017, 2, 309-314.	0.7	46
31	Catalytic Performance of Activated Carbon Supported Tungsten Carbide for Hydrazine Decomposition. Catalysis Letters, 2008, 123, 150-155.	1.4	42
32	Advances in catalytic dehydrogenation of ethanol to acetaldehyde. Green Chemistry, 2021, 23, 7902-7916.	4.6	41
33	Ethylene glycol production from glucose over Wâ€Ru catalysts: Maximizing yield by kinetic modeling and simulation. AICHE Journal, 2017, 63, 2072-2080.	1.8	38
34	Microwave discharge-assisted NO reduction by CH4 over Co/HZSM-5 and Ni/HZSM-5 under O2 excess. Catalysis Letters, 2001, 73, 193-197.	1.4	37
35	Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose. Green Chemistry, 2016, 18, 3607-3613.	4.6	37
36	Carbon-covered Alumina: A Superior Support of Noble Metal-like Catalysts for Hydrazine Decomposition. Catalysis Letters, 2008, 121, 90-96.	1.4	32

#	Article	IF	CITATIONS
37	Production of renewable 1,3-pentadiene from xylitol via formic acid-mediated deoxydehydration and palladium-catalyzed deoxygenation reactions. Green Chemistry, 2017, 19, 638-642.	4.6	31
38	Catalytic Decomposition of Hydrazine over α-Mo2C/γ-Al2O3 Catalysts. Industrial & Engineering Chemistry Research, 2004, 43, 6040-6047.	1.8	30
39	Catalytic conversion of ethanol into butadiene over high performance LiZnHf-MFI zeolite nanosheets. Green Chemistry, 2019, 21, 1006-1010.	4.6	30
40	Selective removal of 1,2â€propanediol and 1,2â€butanediol from bioâ€ethylene glycol by catalytic reaction. AICHE Journal, 2017, 63, 4032-4042.	1.8	27
41	Conversion of ethanol to 1,3-butadiene over high-performance Mg–ZrO _x /MFI nanosheet catalysts <i>via</i> the two-step method. Green Chemistry, 2020, 22, 2852-2861.	4.6	24
42	One-pot conversion of lysine to caprolactam over Ir/H-Beta catalysts. Green Chemistry, 2019, 21, 2462-2468.	4.6	23
43	Complete conversion of lignocellulosic biomass to mixed organic acids and ethylene glycol <i>via</i> cascade steps. Green Chemistry, 2021, 23, 2427-2436.	4.6	23
44	Catalytic upgrading of ethanol to butanol over a binary catalytic system of FeNiO and LiOH. Chinese Journal of Catalysis, 2020, 41, 672-678.	6.9	20
45	Advancing development of biochemicals through the comprehensive evaluation of bio-ethylene glycol. Chemical Engineering Journal, 2021, 411, 128516.	6.6	19
46	A Novel Route to the Preparation of Carbon Supported Nickel Phosphide Catalysts by a Microwave Heating Process. Catalysis Letters, 2010, 135, 305-311.	1.4	18
47	Conversion of Ethanol to <i>n</i> -Butanol over NiCeO ₂ Based Catalysts: Effects of Metal Dispersion and NiCe Interactions. Industrial & Engineering Chemistry Research, 2020, 59, 22057-22067.	1.8	18
48	One-pot synthesis of 2-hydroxymethyl-5-methylpyrazine from renewable 1,3-dihydroxyacetone. Green Chemistry, 2017, 19, 3515-3519.	4.6	17
49	Zeolite-encapsulated Cu nanoparticles with enhanced performance for ethanol dehydrogenation. Journal of Catalysis, 2022, 413, 565-574.	3.1	16
50	Kinetic study on catalytic dehydration of 1,2-propanediol and 1,2-butanediol over H-Beta for bio-ethylene glycol purification. Chemical Engineering Journal, 2018, 335, 530-538.	6.6	15
51	Hetero‣attice Intergrown and Robust MOF Membranes for Polyol Upgrading. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
52	Synthesis of ethanol and its catalytic conversion. Advances in Catalysis, 2019, 64, 89-191.	0.1	13
53	Catalytic Aerobic Oxidation of Lignocellulose-Derived Levulinic Acid in Aqueous Solution: A Novel Route to Synthesize Dicarboxylic Acids for Bio-Based Polymers. ACS Catalysis, 2021, 11, 11588-11596.	5.5	13
54	Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol. Journal of Energy Chemistry, 2022, 72, 306-317.	7.1	12

#	Article	IF	CITATIONS
55	Catalytic hydrogenation of maleic anhydride to γ-butyrolactone over a high-performance hierarchical Ni-Zr-MFI catalyst. Journal of Catalysis, 2022, 410, 69-83.	3.1	9
56	Vapor-Phase Furfural Decarbonylation over a High-Performance Catalyst of 1%Pt/SBA-15. Catalysts, 2020, 10, 1304.	1.6	6
57	Catalytic Conversion of Tetrahydrofurfuryl Alcohol over Stable Pt/MoS2 Catalysts. Catalysis Letters, 2021, 151, 2734-2747.	1.4	6
58	Pd/Sulfated Alumina—A New Effective Catalyst for the Selective Catalytic Reduction of NO with CH ₄ . Topics in Catalysis, 2004, 30/31, 103-105.	1.3	5
59	Hetero‣attice Intergrown and Robust MOF Membranes for Polyol Upgrading. Angewandte Chemie, 2022, 134, .	1.6	3
60	Cover Picture: Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts (Angew. Chem. Int. Ed. 44/2008). Angewandte Chemie - International Edition, 2008, 47, 8321-8321.	7.2	2
61	Tuning the Reaction Selectivity over MgAl Spinel-Supported Pt Catalyst in Furfuryl Alcohol Conversion to Pentanediols. Catalysts, 2021, 11, 415.	1.6	2
62	Titelbild: Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts (Angew. Chem. 44/2008). Angewandte Chemie, 2008, 120, 8445-8445.	1.6	0