Wipawee Winuthayanon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blocking serine protease activity prevents Semenogelin degradation leading to Hyperviscous semen in humans. Biology of Reproduction, 2022, , .	1.2	1
2	Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells, 2022, 11, 1075.	1.8	8
3	Prostaglandin-Endoperoxide Synthase 2 (PTGS2) in the Oviduct: Roles in Fertilization and Early Embryo Development. Endocrinology, 2021, 162, .	1.4	19
4	Cellâ€ŧype specific analysis of physiological action of estrogen in mouse oviducts. FASEB Journal, 2021, 35, e21563.	0.2	14
5	Oviductal Retention of Embryos in Female Mice Lacking Estrogen Receptor $\hat{I}\pm$ in the Isthmus and the Uterus. Endocrinology, 2020, 161, .	1.4	11
6	Extracellular Vesicles and the Oviduct Function. International Journal of Molecular Sciences, 2020, 21, 8280.	1.8	35
7	Mechanism of semen liquefaction and its potential for a novel non-hormonal contraceptionâ€. Biology of Reproduction, 2020, 103, 411-426.	1.2	19
8	Peri- and Postpubertal Estrogen Exposures of Female Mice Optimize Uterine Responses Later in Life. Endocrinology, 2020, 161, .	1.4	5
9	Serine protease inhibitor disrupts sperm motility leading to reduced fertility in female miceâ€. Biology of Reproduction, 2020, 103, 400-410.	1.2	12
10	Roles of steroid hormones in oviductal function. Reproduction, 2020, 159, R125-R137.	1.1	52
11	AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction, 2020, 159, 707-717.	1.1	12
12	Roles of steroid hormones in oviductal function. Reproduction, 2020, 159, R125-R137.	1.1	14
13	Deletion of kallikrein 1b5 (<i>Klk1b5</i>) has no impact on fertility in mice. Molecular Reproduction and Development, 2019, 86, 611-613.	1.0	0
14	Negative elongation factor is essential for endometrial function. FASEB Journal, 2019, 33, 3010-3023.	0.2	8
15	Fallopian Tube/Oviduct: Structure and Cell Biology. , 2018, , 282-290.		1
16	Embryo Transport. , 2018, , 357-363.		1
17	Estrogen Action in the Epithelial Cells of the Mouse Vagina Regulates Neutrophil Infiltration and Vaginal Tissue Integrity. Scientific Reports, 2018, 8, 11247.	1.6	46

18 Estrogen receptor α is required for oviductal transport of embryos. FASEB Journal, 2017, 31, 1595-1607. 0.2 50

#	Article	IF	CITATIONS
19	Selective Estrogen Receptor Modulator (SERM)-like Activities of Diarylheptanoid, a Phytoestrogen from <i>Curcuma comosa</i> , in Breast Cancer Cells, Pre-osteoblast Cells, and Rat Uterine Tissues. Journal of Agricultural and Food Chemistry, 2017, 65, 3490-3496.	2.4	25
20	Role of ERα in Mediating Female Uterine Transcriptional Responses to IGF1. Endocrinology, 2017, 158, 2427-2435.	1.4	17
21	Juxtacrine Activity of Estrogen Receptor α in Uterine Stromal Cells is Necessary for Estrogen-Induced Epithelial Cell Proliferation. Scientific Reports, 2017, 7, 8377.	1.6	48
22	Oviduct: roles in fertilization and early embryo development. Journal of Endocrinology, 2017, 232, R1-R26.	1.2	175
23	Collection of Post-mating Semen from the Female Reproductive Tract and Measurement of Semen Liquefaction in Mice. Journal of Visualized Experiments, 2017, , .	0.2	3
24	Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation. PLoS Genetics, 2017, 13, e1007128.	1.5	57
25	Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo. PLoS Genetics, 2017, 13, e1006743.	1.5	15
26	What's new in estrogen receptor action in the female reproductive tract. Journal of Molecular Endocrinology, 2016, 56, R55-R71.	1.1	103
27	Development of Phenotypic and Transcriptional Biomarkers to Evaluate Relative Activity of Potentially Estrogenic Chemicals in Ovariectomized Mice. Environmental Health Perspectives, 2015, 123, 344-352.	2.8	7
28	Steroid Receptors in the Uterus and Ovary. , 2015, , 1099-1193.		11
29	Oviductal estrogen receptor Î \pm signaling prevents protease-mediated embryo death. ELife, 2015, 4, e10453.	2.8	67
30	Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse. Molecular Endocrinology, 2014, 28, 899-911.	3.7	42
31	Uterine Epithelial Cell Estrogen Receptor Alpha-Dependent and -Independent Genomic Profiles That Underlie Estrogen Responses in Mice1. Biology of Reproduction, 2014, 91, 110.	1.2	39
32	The Natural Estrogenic Compound Diarylheptanoid (D3):In VitroMechanisms of Action andin VivoUterine Responses via Estrogen Receptorα. Environmental Health Perspectives, 2013, 121, 433-439.	2.8	13
33	Selective Loss of Estrogen Receptor Alpha in Female Reproductive Tract Causes Infertility and Loss of Estrogen Induced Uterine Responses Biology of Reproduction, 2012, 87, 334-334.	1.2	0
34	Roles of Epithelial Estrogen Receptor Alpha in the Oviduct During Gamete Fertilization and Embryo Development Biology of Reproduction, 2011, 85, 126-126.	1.2	0
35	Uterine epithelial estrogen receptor α is dispensable for proliferation but essential for complete biological and biochemical responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19272-19277.	3.3	197
36	Selective Ablation of ERα in Uterine Epithelia Alters Uterine Estrogen Responses Biology of Reproduction, 2010, 83, 167-167.	1.2	0

#	Article	IF	CITATIONS
37	Diarylheptanoid Phytoestrogens Isolated from the Medicinal Plant <i>Curcuma comosa</i> : Biologic Actions <i>in Vitro</i> and <i>in Vivo</i> Indicate Estrogen Receptor–Dependent Mechanisms. Environmental Health Perspectives, 2009, 117, 1155-1161.	2.8	60
38	Estrogenic Activity of Diarylheptanoids from Curcuma comosa Roxb. Requires Metabolic Activation. Journal of Agricultural and Food Chemistry, 2009, 57, 840-845.	2.4	51
39	Pollution and fertility: Potential effects for environmental xeno-oestrogens. Biochemist, 2009, 31, 22-26.	0.2	2