
Kazuyuki Iwase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883572/publications.pdf Version: 2024-02-01

KAZUVUKI MASE

#	Article	IF	CITATIONS
1	Copper Aluminum Layered Double Hydroxides with Different Compositions and Morphologies as Electrocatalysts for the Carbon Dioxide Reduction Reaction. ChemSusChem, 2022, 15, .	6.8	15
2	Activity switching of Sn and In species in Heusler alloys for electrochemical CO ₂ reduction. Chemical Communications, 2022, 58, 4865-4868.	4.1	6
3	Are Redoxâ€Active Organic Small Molecules Applicable for Highâ€Voltage (>4ÂV) Lithiumâ€Ion Battery Cathodes?. Advanced Science, 2022, 9, e2200187.	11.2	12
4	Macro―and Nanoâ€Porous 3Dâ€Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	25
5	Iron porphyrin-derived ordered carbonaceous frameworks. Catalysis Today, 2021, 364, 164-171.	4.4	12
6	Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. Journal of Materials Chemistry A, 2021, 9, 11073-11080.	10.3	25
7	Effect of Cobalt Speciation and the Graphitization of the Carbon Matrix on the CO ₂ Electroreduction Activity of Co/N-Doped Carbon Materials. ACS Applied Materials & Interfaces, 2021, 13, 15122-15131.	8.0	13
8	Direct Printable Proton-Conducting Nanocomposite Inks for All-Quasi-Solid-State Electrochemical Capacitors. ACS Applied Energy Materials, 2021, 4, 3651-3659.	5.1	6
9	Sn Atoms on Cu Nanoparticles for Suppressing Competitive H ₂ Evolution in CO ₂ Electrolysis. ACS Applied Nano Materials, 2021, 4, 4994-5003.	5.0	16
10	Rational Design of Electrocatalysts Comprising Single-Atom-Modified Covalent Organic Frameworks for the N ₂ Reduction Reaction: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 10983-10990.	3.1	22
11	A photo-curable gel electrolyte ink for 3D-printable quasi-solid-state lithium-ion batteries. Dalton Transactions, 2021, 50, 16504-16508.	3.3	10
12	Rational Molecular Design of Electrocatalysts Based on Single-Atom Modified Covalent Organic Frameworks for Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 1644-1652.	5.1	44
13	Glycerol Oxidation Catalyzed by High-valency Ruthenium Species at Electrochemical Interfaces. Chemistry Letters, 2020, 49, 513-516.	1.3	3
14	Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework. ACS Applied Materials & Interfaces, 2020, 12, 29376-29382.	8.0	5
15	Supercritical hydrothermal synthesis of MoS ₂ nanosheets with controllable layer number and phase structure. Dalton Transactions, 2020, 49, 9377-9384.	3.3	17
16	â€~Click' conjugated porous polymer nanofilm with a large domain size created by a liquid/liquid interfacial protocol. Chemical Communications, 2020, 56, 3677-3680.	4.1	5
17	Selective Reduction of Nitrate by a Local Cell Catalyst Composed of Metal-Doped Covalent Triazine Frameworks. ACS Catalysis, 2018, 8, 2693-2698.	11.2	41
18	Sulfurâ€Linked Covalent Triazine Frameworks Doped with Coordinatively Unsaturated Cu(I) as Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2018, 5, 805-810.	3.4	26

Kazuyuki lwase

#	Article	IF	CITATIONS
19	Cooperative Electrocatalytic Reduction of Nitrobenzene to Aniline in Aqueous Solution by Copper-modified Covalent Triazine Framework. Chemistry Letters, 2018, 47, 304-307.	1.3	11
20	Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO ₂ electrochemical reduction. Chemical Science, 2018, 9, 3941-3947.	7.4	164
21	Nickelâ€Nitrogenâ€Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide. Small, 2016, 12, 6083-6089.	10.0	228
22	Electrocatalytic Reduction of Nitrate to Nitrous Oxide by a Copper-Modified Covalent Triazine Framework. Journal of Physical Chemistry C, 2016, 120, 15729-15734.	3.1	117
23	Copperâ€Modified Covalent Triazine Frameworks as Nonâ€Nobleâ€Metal Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 11068-11072.	13.8	237