
Chuanfeng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883388/publications.pdf Version: 2024-02-01

CHUANEENC 7HAO

#	Article	IF	CITATIONS
1	Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 2016, 54, 866-929.	23.0	591
2	Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 2006, 440, 787-789.	27.8	378
3	Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environment International, 2020, 139, 105558.	10.0	281
4	A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmospheric Environment, 2020, 220, 117066.	4.1	264
5	East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EASTâ€AlR _{CPC}). Journal of Geophysical Research D: Atmospheres, 2019, 124, 13026-13054.	3.3	175
6	Effects of Arctic haze on surface cloud radiative forcing. Geophysical Research Letters, 2015, 42, 557-564.	4.0	170
7	Analysis of influential factors for the relationship between PM _{2.5} and AOD in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 13473-13489.	4.9	154
8	Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4093-4099.	3.3	129
9	Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 2020, 7, 492-495.	9.5	128
10	Distinct impact of different types of aerosols on surface solar radiation in China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6459-6471.	3.3	123
11	Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 190.	1.6	113
12	Toward understanding of differences in current cloud retrievals of ARM groundâ€based measurements. Journal of Geophysical Research, 2012, 117, .	3.3	107
13	Atmospheric inverse estimates of methane emissions from Central California. Journal of Geophysical Research, 2009, 114, .	3.3	97
14	Negative Aerosol loud <i>r</i> _{<i>e</i>} Relationship From Aircraft Observations Over Hebei, China. Earth and Space Science, 2018, 5, 19-29.	2.6	96
15	Enlarging Rainfall Area of Tropical Cyclones by Atmospheric Aerosols. Geophysical Research Letters, 2018, 45, 8604-8611.	4.0	94
16	Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization. Journal of Climate, 2013, 26, 5981-5999.	3.2	83
17	Aerosol hygroscopicity and cloud condensation nuclei activity during the AC ³ Exp campaign: implications for cloud condensation nuclei parameterization. Atmospheric Chemistry and Physics, 2014, 14, 13423-13437.	4.9	71
18	Long-term variation of cloud droplet number concentrations from space-based Lidar. Remote Sensing of Environment, 2018, 213, 144-161.	11.0	67

#	Article	IF	CITATIONS
19	Aerosol first indirect effects on nonâ€precipitating lowâ€level liquid cloud properties as simulated by CAM5 at ARM sites. Geophysical Research Letters, 2012, 39, .	4.0	66
20	Spatial Representativeness of PM _{2.5} Concentrations Obtained Using Observations From Network Stations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3145-3158.	3.3	66
21	Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmospheric Research, 2019, 221, 27-33.	4.1	66
22	The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?. Atmospheric Chemistry and Physics, 2018, 18, 12797-12816.	4.9	65
23	Spatial and temporal distribution of NO2 and SO2 in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations. Atmospheric Environment, 2018, 188, 50-59.	4.1	62
24	Seasonal variation of CH ₄ emissions from central California. Journal of Geophysical Research, 2012, 117, .	3.3	60
25	A new cloud and aerosol layer detection method based on micropulse lidar measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6788-6802.	3.3	59
26	Fifteenâ€year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations. International Journal of Climatology, 2019, 39, 2612-2629.	3.5	59
27	Estimating the Contribution of Local Primary Emissions to Particulate Pollution Using Highâ€Đensity Station Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1648-1661.	3.3	59
28	Wintertime cooling and a potential connection with transported aerosols in Hong Kong during recent decades. Atmospheric Research, 2018, 211, 52-61.	4.1	58
29	8-Year ground-based observational analysis about the seasonal variation of the aerosol-cloud droplet effective radius relationship at SGP site. Atmospheric Environment, 2017, 164, 139-146.	4.1	57
30	Mesoscale Convective Systems in the Asian Monsoon Region From Advanced Himawari Imager: Algorithms and Preliminary Results. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2210-2234.	3.3	57
31	A CloudSat Perspective on the Cloud Climatology and Its Association with Aerosol Perturbations in the Vertical over Eastern China. Journals of the Atmospheric Sciences, 2016, 73, 3599-3616.	1.7	56
32	A Spatial-Temporal Interpretable Deep Learning Model for improving interpretability and predictive accuracy of satellite-based PM2.5. Environmental Pollution, 2021, 273, 116459.	7.5	51
33	Spatio-Temporal Variations of the PM2.5/PM10 Ratios and Its Application to Air Pollution Type Classification in China. Frontiers in Environmental Science, 2021, 9, .	3.3	50
34	Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 329-343.	3.3	49
35	Toward Understanding the Differences of PM2.5 Characteristics Among Five China Urban Cities. Asia-Pacific Journal of Atmospheric Sciences, 2020, 56, 493-502.	2.3	49
36	Spatiotemporal distributions of cloud properties over China based on Himawari-8 advanced Himawari imager data. Atmospheric Research, 2020, 240, 104927.	4.1	47

#	Article	IF	CITATIONS
37	Application and Evaluation of an Explicit Prognostic Cloud over Scheme in GRAPES Global Forecast System. Journal of Advances in Modeling Earth Systems, 2018, 10, 652-667.	3.8	46
38	Growth rates of fine aerosol particles at a site near Beijing in June 2013. Advances in Atmospheric Sciences, 2018, 35, 209-217.	4.3	45
39	A Case Study of Stratus Cloud Properties Using In Situ Aircraft Observations over Huanghua, China. Atmosphere, 2019, 10, 19.	2.3	45
40	Evaluation and Comparison of Himawari-8 L2 V1.0, V2.1 and MODIS C6.1 aerosol products over Asia and the oceania regions. Atmospheric Environment, 2020, 220, 117068.	4.1	45
41	Ground-based remote sensing of thin clouds in the Arctic. Atmospheric Measurement Techniques, 2013, 6, 1227-1243.	3.1	44
42	Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization. Atmospheric Research, 2019, 227, 198-209.	4.1	44
43	Health risk and disease burden attributable to long-term global fine-mode particles. Chemosphere, 2022, 287, 132435.	8.2	44
44	Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China. Atmospheric Chemistry and Physics, 2021, 21, 16555-16574.	4.9	43
45	Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China. Atmospheric Chemistry and Physics, 2016, 16, 5413-5425.	4.9	42
46	MMCR-based characteristic properties of non-precipitating cloud liquid droplets at Naqu site over Tibetan Plateau in July 2014. Atmospheric Research, 2017, 190, 68-76.	4.1	42
47	Extreme clustering – A clustering method via density extreme points. Information Sciences, 2021, 542, 24-39.	6.9	42
48	The Role of Primary Emission and Transboundary Transport in the Air Quality Changes During and After the COVIDâ€19 Lockdown in China. Geophysical Research Letters, 2021, 48, e2020GL091065.	4.0	42
49	Influence of Saharan Dust on the Large‣cale Meteorological Environment for Development of Tropical Cyclone Over North Atlantic Ocean Basin. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033454.	3.3	41
50	Spatiotemporal Variations of Precipitation in China Using Surface Gauge Observations from 1961 to 2016. Atmosphere, 2020, 11, 303.	2.3	41
51	Distinct Impacts of Light and Heavy Precipitation on PM _{2.5} Mass Concentration in Beijing. Earth and Space Science, 2019, 6, 1915-1925.	2.6	37
52	Aerosol Properties Over Tibetan Plateau From a Decade of AERONET Measurements: Baseline, Types, and Influencing Factors. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13357-13374.	3.3	37
53	Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China. Atmosphere, 2020, 11, 906.	2.3	37
54	Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmospheric Chemistry and Physics, 2021, 21, 4849-4868.	4.9	33

#	Article	IF	CITATIONS
55	Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia. Atmospheric Chemistry and Physics, 2021, 21, 3803-3825.	4.9	33
56	Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models. Atmospheric Chemistry and Physics, 2018, 18, 1395-1417.	4.9	32
57	Impact of aerosols on tropical cyclone-induced precipitation over the mainland of China. Climatic Change, 2018, 148, 173-185.	3.6	31
58	Seasonal variations in N ₂ O emissions from central California. Geophysical Research Letters, 2012, 39, .	4.0	30
59	NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia. Climate Dynamics, 2019, 53, 895-905.	3.8	30
60	Estimation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 240, 106672.	2.3	30
61	An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei. Atmospheric Chemistry and Physics, 2020, 20, 5211-5229.	4.9	30
62	The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau. Atmospheric Chemistry and Physics, 2018, 18, 7329-7343.	4.9	29
63	Vertical Characterization and Source Apportionment of Water-Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 273-284.	2.7	28
64	Microphysical Properties of Generating Cells Over the Southern Ocean: Results From SOCRATES. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032237.	3.3	27
65	Toward Understanding the Properties of High Ice Clouds at the Naqu Site on the Tibetan Plateau Using Ground-Based Active Remote Sensing Measurements Obtained during a Short Period in July 2014. Journal of Applied Meteorology and Climatology, 2016, 55, 2493-2507.	1.5	26
66	Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5375-5385.	3.3	25
67	Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia. Atmospheric Chemistry and Physics, 2021, 21, 3833-3853.	4.9	24
68	Significant Contribution of Severe Ozone Loss to the Siberianâ€Arctic Surface Warming in Spring 2020. Geophysical Research Letters, 2021, 48, e2021GL092509.	4.0	24
69	Warming effect of dust aerosols modulated by overlapping clouds below. Atmospheric Environment, 2017, 166, 393-402.	4.1	23
70	Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmospheric Chemistry and Physics, 2021, 21, 6199-6220.	4.9	23
71	Increased Dust Aerosols in the High Troposphere Over the Tibetan Plateau From 1990s to 2000s. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032807.	3.3	22
72	Urban Dry Island Effect Mitigated Urbanization Effect on Observed Warming in China. Journal of Climate, 2019, 32, 5705-5723.	3.2	20

#	Article	IF	CITATIONS
73	Improved Aerosol Retrievals Over Complex Regions Using NPP Visible Infrared Imaging Radiometer Suite Observations. Earth and Space Science, 2019, 6, 629-645.	2.6	20
74	Dominance of Shortwave Radiative Heating in the Seaâ€Land Breeze Amplitude and its Impacts on Atmospheric Visibility in Tokyo, Japan. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031541.	3.3	20
75	Machine learning-based estimation of ground-level NO2 concentrations over China. Science of the Total Environment, 2022, 807, 150721.	8.0	20
76	Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using Himawari-8 data. Remote Sensing of Environment, 2022, 273, 112971.	11.0	20
77	An intercomparison of radar-based liquid cloud microphysics retrievals and implications for model evaluation studies. Atmospheric Measurement Techniques, 2012, 5, 1409-1424.	3.1	19
78	Intermediate Aerosol Loading Enhances Photosynthetic Activity of Croplands. Geophysical Research Letters, 2021, 48, e2020GL091893.	4.0	19
79	Multiâ€Source Data Based Investigation of Aerosolâ€Cloud Interaction Over the North China Plain and North of the Yangtze Plain. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035609.	3.3	19
80	Ground-level NO2 concentration estimation based on OMI tropospheric NO2 and its spatiotemporal characteristics in typical regions of China. Atmospheric Research, 2021, 264, 105821.	4.1	19
81	Distinct Change of Supercooled Liquid Cloud Properties by Aerosols From an Aircraftâ€Based Seeding Experiment. Earth and Space Science, 2020, 7, e2020EA001196.	2.6	18
82	A study on the characteristics of ice nucleating particles concentration and aerosols and their relationship in spring in Beijing. Atmospheric Research, 2021, 247, 105196.	4.1	18
83	Opposite effects of absorbing aerosols on the retrievals of cloud optical depth from spaceborne and groundâ€based measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5104-5114.	3.3	17
84	Quantify contribution of aerosol errors to cloud fraction biases in CMIP5 Atmospheric Model Intercomparison Project simulations. International Journal of Climatology, 2018, 38, 3140-3156.	3.5	17
85	Understanding global changes in fine-mode aerosols during 2008–2017 using statistical methods and deep learning approach. Environment International, 2021, 149, 106392.	10.0	17
86	Spatiotemporal Distributions of Cloud Parameters and the Temperature Response Over the Mongolian Plateau During 2006–2015 Based on MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 549-558.	4.9	16
87	Enhanced Aerosol Estimations From Suomi-NPP VIIRS Images Over Heterogeneous Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 9534-9543.	6.3	16
88	Toward Understanding the Variation of Air Quality Based on a Comprehensive Analysis in Hebei Province under the Influence of COVID-19 Lockdown. Atmosphere, 2021, 12, 267.	2.3	16
89	Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method. Atmospheric Research, 2018, 202, 148-155.	4.1	15
90	Atmospheric Instability Dominates the Longâ€Term Variation of Cloud Vertical Overlap Over the Southern Great Plains Site. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9691-9701.	3.3	15

#	Article	IF	CITATIONS
91	Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol–cloud interaction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110756119.	7.1	15
92	A Supercooled Water Cloud Detection Algorithm Using Himawariâ€8 Satellite Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2724-2738.	3.3	14
93	Evaluation of Cloud Microphysical Properties Derived From MODIS and Himawariâ€8 Using In Situ Aircraft Measurements Over the Southern Ocean. Earth and Space Science, 2020, 7, e2020EA001137.	2.6	14
94	Dispersion of Droplet Size Distributions in Supercooled Nonâ€precipitating Stratocumulus from Aircraft Observations Obtained during the Southern Ocean Cloud Radiation Aerosol Transport Experimental Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033720.	3.3	14
95	Effects of biomass burning on chlorophyll-a concentration and particulate organic carbon in the subarctic North Pacific Ocean based on satellite observations and WRF-Chem model simulations: A case study. Atmospheric Research, 2021, 254, 105526.	4.1	14
96	Potential impacts of Arctic warming on Northern Hemisphere mid-latitude aerosol optical depth. Climate Dynamics, 2019, 53, 1637-1651.	3.8	13
97	Atmospheric inverse estimates of CO emissions from Zhengzhou, China. Environmental Pollution, 2020, 267, 115164.	7.5	13
98	Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system. Geoscientific Model Development, 2021, 14, 205-221.	3.6	13
99	Development of ZJU high-spectral-resolution lidar for aerosol and cloud: Feature detection and classification. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 261, 107513.	2.3	13
100	Increase of precipitation by cloud seeding observed from a case study in November 2020 over Shijiazhuang, China. Atmospheric Research, 2021, 262, 105766.	4.1	13
101	HIBOC: Improving the clustering accuracy by ameliorating dataset with gravitation. Information Sciences, 2021, 550, 41-56.	6.9	12
102	Significant Contribution of Stratospheric Water Vapor to the Poleward Expansion of the Hadley Circulation in Autumn Under Greenhouse Warming. Geophysical Research Letters, 2021, 48, e2021GL094008.	4.0	12
103	Spatio-temporal distribution of aerosol direct radiative forcing over mid-latitude regions in north hemisphere estimated from satellite observations. Atmospheric Research, 2022, 266, 105938.	4.1	12
104	Stochastic Bias Correction and Uncertainty Estimation of Satellite-Retrieved Soil Moisture Products. Remote Sensing, 2017, 9, 847.	4.0	10
105	Larger Sensitivity of Arctic Precipitation Phase to Aerosol than Greenhouse Gas Forcing. Geophysical Research Letters, 2020, 47, e2020GL090452.	4.0	10
106	Insight Into the Seasonal Variations of the Sea‣and Breeze in Los Angeles With Respect to the Effects of Solar Radiation and Climate Type. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033197.	3.3	10
107	Comparison of the Anthropogenic Emission Inventory for CMIP6 Models with a Country-Level Inventory over China and the Simulations of the Aerosol Properties. Advances in Atmospheric Sciences, 2022, 39, 80-96.	4.3	10
108	Satelliteâ€Based Assessment of Local Environment Change by Wind Farms in China. Earth and Space Science, 2019, 6, 947-958.	2.6	9

#	Article	IF	CITATIONS
109	Ratio of PM2.5 to PM10 Mass Concentrations in Beijing and Relationships with Pollution from the North China Plain. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 421-434.	2.3	9
110	Climateâ€Driven Characteristics of Sea‣and Breezes Over the Globe. Geophysical Research Letters, 2021, 48, e2020GL092308.	4.0	9
111	Stratospheric ozone loss-induced cloud effects lead to less surface ultraviolet radiation over the Siberian Arctic in spring. Environmental Research Letters, 2021, 16, 084057.	5.2	9
112	Sulfur aerosols in the Arctic, Antarctic, and Tibetan Plateau: Current knowledge and future perspectives. Earth-Science Reviews, 2021, 220, 103753.	9.1	9
113	From air quality sensors to sensor networks: Things we need to learn. Sensors and Actuators B: Chemical, 2022, 351, 130958.	7.8	9
114	Impact of emissions from a single urban source on air quality estimated from mobile observation and WRF-STILT model simulations. Air Quality, Atmosphere and Health, 2021, 14, 1313-1323.	3.3	7
115	Distinct changes of cloud microphysical properties and height development by dust aerosols from a case study over Inner-Mongolia region. Atmospheric Research, 2022, 273, 106175.	4.1	7
116	Concurrent hot extremes and high ultraviolet radiation in summer over the Yangtze Plain and their possible impact on surface ozone. Environmental Research Letters, 2022, 17, 064001.	5.2	6
117	Cloud macrophysical characteristics in China mainland and east coast from 2006 to 2017 using satellite active remote sensing observations. International Journal of Climatology, 2022, 42, 8984-9002.	3.5	6
118	Spatiotemporal distributions of cloud radiative forcing and response to cloud parameters over the Mongolian Plateau during 2003–2017. International Journal of Climatology, 2020, 40, 4082-4101.	3.5	5
119	Vertical Characteristics of Pollution Transport in Hong Kong and Beijing, China. Atmosphere, 2021, 12, 457.	2.3	5
120	Sensitivity of snowfall forecast over North China to ice crystal deposition/sublimation parameterizations in the WSM6 cloud microphysics scheme. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3349-3372.	2.7	5
121	Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements. Optics Express, 2019, 27, 34126.	3.4	5
122	<i>δ</i> â€Open set clustering—A new topological clustering method. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1262.	6.8	4
123	Aerosol and cloud properties over a coastal area from aircraft observations in Zhejiang, China. Atmospheric Environment, 2021, 267, 118771.	4.1	4
124	A CASE STUDY OF POLLUTION PROCESS IN NORTH CHINA REGION USING REANALYSIS METEOROLOGY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W5, 73-76.	0.2	4
125	A varianceâ€based decomposition and global sensitivity index method for uncertainty quantification: Application to retrieved ice cloud properties. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4234-4247.	3.3	3
126	Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events. Atmospheric Chemistry and Physics, 2022, 22, 419-439.	4.9	2

#	Article	IF	CITATIONS
127	A new perspective on surface wind speed variation with respect to the contribution of sea-land breezes. Atmospheric Research, 2022, 275, 106226.	4.1	2
128	Potential Impacts of Aerosol on Diurnal Variation of Precipitation in Autumn Over the Sichuan Basin, China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
129	Feasibility study of water vapor and temperature retrieval using a combined vibrational rotational Raman and Mie scattering multi-wavelength lidar. Proceedings of SPIE, 2014, , .	0.8	1
130	Response of Mixed-Phase Cloud Microphysical Properties to Cloud-Seeding Near Cloud Top Over Hebei, China. Frontiers in Environmental Science, 2022, 10, .	3.3	1
131	Aerosol first indirect effect over narrow longitude regions of North Pacific and same-latitude lands. Atmospheric Environment, 2022, 277, 119081.	4.1	1
132	Active nitrogen cycle driven by solar radiation in clean desert air. Earth's Future, 0, , .	6.3	1
133	Impact of ice nucleation parameterizations on CAM5 simulated arctic clouds and radiation: A sensitivity study. , 2013, , .		0
134	Inter-comparison of various approaches of ground-based active remote sensing of cloud water content. , 2014, , .		0
135	Multi-Case Analysis of Ice Particle Properties of Stratiform Clouds Using In Situ Aircraft Observations in Hebei, China. Atmosphere, 2022, 13, 200.	2.3	0
136	Annual Variation of Global Air Pollution: Initial Aerosol Effect or Climate Interaction?. Frontiers in Environmental Science, 2021, 9, .	3.3	0
137	Understanding Third Pole Atmospheric Dynamics and Land Surface Processes and Their Associations with the Cryosphere, Air Quality, and Climate Change. Advances in Atmospheric Sciences, 2022, 39, 1017-1020.	4.3	0