Jane Mellor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883376/publications.pdf

Version: 2024-02-01

331538 377752 2,253 33 21 34 h-index citations g-index papers 46 46 46 3493 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pharmacologically induced weight loss is associated with distinct gut microbiome changes in obese rats. BMC Microbiology, 2022, 22, 91.	1.3	4
2	H3K27 modifiers regulate lifespan in C. elegans in a context-dependent manner. BMC Biology, 2021, 19, 59.	1.7	17
3	Spt4 facilitates the movement of RNA polymerase II through theÂ+2 nucleosomal barrier. Cell Reports, 2021, 36, 109755.	2.9	11
4	FACT is recruited to theÂ+1 nucleosome of transcribed genes and spreads in a Chd1-dependent manner. Molecular Cell, 2021, 81, 3542-3559.e11.	4.5	33
5	Coldâ€induced chromatin compaction and nuclear retention of clock mRNAs resets the circadian rhythm. EMBO Journal, 2020, 39, e105604.	3 . 5	11
6	Polyamines Control elF5A Hypusination, TFEB Translation, and Autophagy to Reverse B Cell Senescence. Molecular Cell, 2019, 76, 110-125.e9.	4.5	205
7	Antisense transcriptionâ€dependent chromatin signature modulates sense transcript dynamics. Molecular Systems Biology, 2018, 14, e8007.	3.2	42
8	IDH1: Linking Metabolism and Epigenetics. Frontiers in Genetics, 2018, 9, 493.	1.1	53
9	Elucidating the Role of Chromatin State and Transcription Factors on the Regulation of the Yeast Metabolic Cycle: A Multi-Omic Integrative Approach. Frontiers in Genetics, 2018, 9, 578.	1.1	10
10	Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate. Molecular Cell, 2017, 65, 685-698.e8.	4.5	55
11	Is H3K4me3 instructive for transcription activation?. BioEssays, 2017, 39, 1-12.	1.2	373
12	CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape. ELife, 2017, 6, .	2.8	27
13	Longevity effect of a polysaccharide from Chlorophytum borivilianum on Caenorhabditis elegans and Saccharomyces cerevisiae. PLoS ONE, 2017, 12, e0179813.	1.1	9
14	The molecular basis of metabolic cycles and their relationship to circadian rhythms. Nature Structural and Molecular Biology, 2016, 23, 1035-1044.	3.6	36
15	The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell, 2016, 167, 1201-1214.e15.	13.5	34
16	Using both strands: The fundamental nature of antisense transcription. Bioarchitecture, 2016, 6, 12-21.	1.5	18
17	The Interleaved Genome. Trends in Genetics, 2016, 32, 57-71.	2.9	45
18	Sense and antisense transcription are associated with distinct chromatin architectures across genes. Nucleic Acids Research, 2015, 43, 7823-7837.	6.5	63

#	Article	IF	Citations
19	Lysine Acetylation Controls Local Protein Conformation by Influencing Proline Isomerization. Molecular Cell, 2014, 55, 733-744.	4.5	39
20	Proline cis-trans isomerization is influenced by local lysine acetylation-deacetylation. Microbial Cell, 2014, 1, 390-392.	1.4	6
21	Transcription mediated insulation and interference direct gene cluster expression switches. ELife, 2014, 3, e03635.	2.8	35
22	A pre-initiation complex at the $3\hat{a}\in^2$ -end of genes drives antisense transcription independent of divergent sense transcription. Nucleic Acids Research, 2012, 40, 2432-2444.	6.5	61
23	Linking the Cell Cycle to Histone Modifications: Dot1, G1/S, and Cycling K79me2. Molecular Cell, 2009, 35, 729-730.	4.5	10
24	A glimpse into the epigenetic landscape of gene regulation. Current Opinion in Genetics and Development, 2008, 18, 116-122.	1.5	62
25	Dynamic nucleosomes and gene transcription. Trends in Genetics, 2006, 22, 320-329.	2.9	151
26	The Dynamics of Chromatin Remodeling at Promoters. Molecular Cell, 2005, 19, 147-157.	4.5	189
27	ISWI complexes in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1677, 100-112.	2.4	86
28	CHARACTERISATION OF AMYLOLYTIC BREWING YEAST. Journal of the Institute of Brewing, 1996, 102, 27-32.	0.8	6
29	Transcriptional activation by upstream activator sequences requires distinct interactions with downstream elements in the yeast TRP1 promoter. Molecular Genetics and Genomics, 1991, 225, 217-224.	2.4	3
30	An AT rich region of dyad symmetry is a promoter element in the yeast TRP1 gene. Molecular Genetics and Genomics, 1988, 211, 472-476.	2.4	9
31	A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1. Nature, 1985, 313, 243-246.	13.7	202
32	Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature, 1985, 318, 583-586.	13.7	221
33	Heterologous Gene Expression in <i>Saccharomyces cerevisiae</i> . Biotechnology and Genetic Engineering Reviews, 1985, 3, 377-416.	2.4	88