Katie J Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883313/publications.pdf Version: 2024-02-01

KATIE I FIELD

#	Article	IF	CITATIONS
1	Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 2017, 105, 921-929.	4.0	193
2	Symbiotic options for the conquest of land. Trends in Ecology and Evolution, 2015, 30, 477-486.	8.7	172
3	The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant Journal, 2009, 58, 299-317.	5.7	164
4	First evidence of mutualism between ancient plant lineages (<scp>H</scp> aplomitriopsida liverworts) and <scp>M</scp> ucoromycotina fungi and its response to simulated <scp>P</scp> alaeozoic changes in atmospheric <scp>CO</scp> ₂ . New Phytologist, 2015, 205, 743-756.	7.3	163
5	Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME Journal, 2016, 10, 1514-1526.	9.8	92
6	Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nature Communications, 2012, 3, 835.	12.8	91
7	Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 2018, 220, 996-1011.	7.3	84
8	Metabolomic and physiological responses reveal multiâ€phasic acclimation of <i>Arabidopsis thaliana</i> to chronic UV radiation. Plant, Cell and Environment, 2009, 32, 1377-1389.	5.7	79
9	Xyloglucan is released by plants and promotes soil particle aggregation. New Phytologist, 2018, 217, 1128-1136.	7.3	79
10	A mycorrhizal revolution. Current Opinion in Plant Biology, 2018, 44, 1-6.	7.1	73
11	Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Global Change Biology, 2020, 26, 1725-1738.	9.5	70
12	Mucoromycotina Fine Root Endophyte Fungi Form Nutritional Mutualisms with Vascular Plants. Plant Physiology, 2019, 181, 565-577.	4.8	51
13	Functional complementarity of ancient plant–fungal mutualisms: contrasting nitrogen, phosphorus and carbon exchanges between Mucoromycotina and Glomeromycotina fungal symbionts of liverworts. New Phytologist, 2019, 223, 908-921.	7.3	47
14	Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181600.	2.6	46
15	A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhizaâ€acquired nutrients. Plants People Planet, 2021, 3, 588-599.	3.3	44
16	Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2concentrations. Annals of Botany, 2015, 115, 915-922.	2.9	40
17	From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in <i><scp>O</scp>phioglossum vulgatum</i> sporophytes. New Phytologist, 2015, 205, 1492-1502.	7.3	37
18	From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi. Annals of Botany, 2018, 121, 221-227.	2.9	33

Katie J Field

#	Article	IF	CITATIONS
19	Aphid Herbivory Drives Asymmetry in Carbon for Nutrient Exchange between Plants and an Arbuscular Mycorrhizal Fungus. Current Biology, 2020, 30, 1801-1808.e5.	3.9	33
20	The distribution and evolution of fungal symbioses in ancient lineages of land plants. Mycorrhiza, 2020, 30, 23-49.	2.8	31
21	Pteridophyte fungal associations: Current knowledge and future perspectives. Journal of Systematics and Evolution, 2016, 54, 666-678.	3.1	27
22	Environmental metabolomics links genotype to phenotype and predicts genotype abundance in wild plant populations. Physiologia Plantarum, 2011, 142, 352-360.	5.2	23
23	Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160503.	4.0	22
24	A quantitative method for the high throughput screening for the soil adhesion properties of plant and microbial polysaccharides and exudates. Plant and Soil, 2018, 428, 57-65.	3.7	22
25	Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza, 2019, 29, 551-565.	2.8	20
26	A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid. Frontiers in Plant Science, 2017, 8, 1897.	3.6	18
27	Phenology and function in lycopod–Mucoromycotina symbiosis. New Phytologist, 2021, 229, 2389-2394.	7.3	14
28	The potential role of Mucoromycotina â€~fine root endophytes' in plant nitrogen nutrition. Physiologia Plantarum, 2022, 174, e13715.	5.2	14
29	Best of Both Worlds: Simultaneous High-Light and Shade-Tolerance Adaptations within Individual Leaves of the Living Stone Lithops aucampiae. PLoS ONE, 2013, 8, e75671.	2.5	13
30	Mycorrhizas for a changing world: Sustainability, conservation, and society. Plants People Planet, 2020, 2, 98-103.	3.3	13
31	Critical research challenges facing Mucoromycotina â€~fine root endophytes'. New Phytologist, 2021, 232, 1528-1534.	7.3	13
32	Disruption of carbon for nutrient exchange between potato and arbuscular mycorrhizal fungi enhanced cyst nematode fitness and host pest tolerance. New Phytologist, 2022, 234, 269-279.	7.3	13
33	Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food and Energy Security, 2022, 11, .	4.3	13
34	Cultivarâ€dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO ₂ . Plants People Planet, 2021, 3, 553-566.	3.3	12
35	The emerging threat of humanâ€use antifungals in sustainable and circular agriculture schemes. Plants People Planet, 2021, 3, 685-693.	3.3	12
36	Carbon for nutrient exchange between Lycopodiella inundata and Mucoromycotina fine root endophytes is unresponsive to high atmospheric CO2. Mycorrhiza, 2021, 31, 431-440.	2.8	7

Katie J Field

#	Article	IF	CITATIONS
37	The influence of competing root symbionts on belowâ€ground plant resource allocation. Ecology and Evolution, 2021, 11, 2997-3003.	1.9	5
38	Mycorrhizal mediation of sustainable development goals. Plants People Planet, 2021, 3, 430-432.	3.3	3
39	Molecular Evidence of Mucoromycotina "Fine Root Endophyte―Fungi in Agricultural Crops. Biology and Life Sciences Forum, 2020, 4, .	0.6	3
40	Advances in understanding of mycorrhizal-like associations in bryophytes. Bryophyte Diversity and Evolution, 2021, 43, .	1.1	2
41	Katie J. Field. New Phytologist, 2016, 212, 836-837.	7.3	0