
Gerben J Messelink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl, 2014, 59, 377-393.	2.0	195
2	Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biological Control, 2008, 44, 372-379.	3.0	188
3	Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl, 2006, 51, 753-768.	2.0	176
4	The Banker Plant Method in Biological Control. Critical Reviews in Plant Sciences, 2011, 30, 259-278.	5.7	171
5	"Protected Biological Control―– Biological pest management in the greenhouse industry. Biological Control, 2010, 52, 216-220.	3.0	95
6	Integrated pest management of Tuta absoluta: practical implementations across different worldÂregions. Journal of Pest Science, 2022, 95, 17-39.	3.7	95
7	Natural enemyâ€mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Pest Management Science, 2014, 70, 1769-1779.	3.4	83
8	Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. BioControl, 2010, 55, 387-398.	2.0	82
9	New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. Journal of Pest Science, 2016, 89, 295-311.	3.7	76
10	Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biological Control, 2014, 79, 1-7.	3.0	60
11	Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. Journal of Applied Entomology, 2015, 139, 333-341.	1.8	59
12	Supplemental food that supports both predator and pest: A risk for biological control?. Experimental and Applied Acarology, 2015, 65, 511-524.	1.6	53
13	Induced plant defences in biological control of arthropod pests: a doubleâ€edged sword. Pest Management Science, 2017, 73, 1780-1788.	3.4	52
14	Biological control of aphids in the presence of thrips and their enemies. BioControl, 2013, 58, 45-55.	2.0	44
15	Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia, 2018, 186, 101-113.	2.0	41
16	Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biological Control, 2017, 105, 19-26.	3.0	40
17	Identification and characterization of a DNA photolyase-containing baculovirus from Chrysodeixis chalcites. Virology, 2004, 330, 460-470.	2.4	39
18	Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biological Control, 2011, 57, 246-252.	3.0	32

Gerben J Messelink

#	Article	IF	CITATIONS
19	Biological control of Echinothrips americanus by phytoseiid predatory mites and the effect of pollen as supplemental food. Experimental and Applied Acarology, 2017, 73, 209-221.	1.6	28
20	Prey temporarily escape from predation in the presence of a second prey species. Ecological Entomology, 2012, 37, 529-535.	2.2	26
21	Functional response of the mirid predators Dicyphus bolivari and Dicyphus errans and their efficacy as biological control agents of Tuta absoluta on tomato. Journal of Pest Science, 2019, 92, 1457-1466.	3.7	22
22	Herbivores avoid host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. Journal of Pest Science, 2019, 92, 737-745.	3.7	22
23	Combining lacewings and parasitoids for biological control of foxglove aphids in sweet pepper. Journal of Applied Entomology, 2017, 141, 402-410.	1.8	21
24	Induction of plant defenses: the added value of zoophytophagous predators. Journal of Pest Science, 2022, 95, 1501-1517.	3.7	17
25	Predatory efficacy of Dicyphus errans on different prey. Acta Horticulturae, 2017, , 425-430.	0.2	16
26	The potential of highly nutritious frozen stages of <i>Tyrophagus putrescentiae</i> as a supplemental food source for the predatory mite <i>Amblyseius swirskii</i> . Biocontrol Science and Technology, 2020, 30, 403-417.	1.3	16
27	Biodiversity in and around Greenhouses: Benefits and Potential Risks for Pest Management. Insects, 2021, 12, 933.	2.2	14
28	Biological control of mealybugs with lacewing larvae is affected by the presence and type of supplemental prey. BioControl, 2016, 61, 555-565.	2.0	13
29	The omnivorous predator <i>Macrolophus pygmaeus</i> , a good candidate for the control of both greenhouse whitefly and poinsettia thrips on gerbera plants. Insect Science, 2020, 27, 510-518.	3.0	13
30	Development and thermal activity thresholds of European mirid predatory bugs. Biological Control, 2021, 152, 104423.	3.0	13
31	Tomato Inoculation With a Non-pathogenic Strain of Fusarium oxysporum Enhances Pest Control by Changing the Feeding Preference of an Omnivorous Predator. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	9
32	Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems. PLoS ONE, 2013, 8, e62530.	2.5	6
33	Provision of astigmatid mites as supplementary food increases the density of the predatory mite Amblyseius swirskii in greenhouse crops, but does not support the omnivorous pest, western flower thrips. BioControl, 2021, 66, 511-522.	2.0	5
34	Dicyphus predatory bugs pre-established on tomato plants reduce Nesidiocoris tenuis population growth. Journal of Pest Science, 0, , 1.	3.7	5
35	IMPROVING CONTROL OF DUPONCHELIA FOVEALIS (LEPIDOPTERA: PYRALIDAE) BY ROOTING MEDIA RELATED STRATEGIES. Acta Horticulturae, 2009, , 203-208.	0.2	4
36	In search of artificial domatia for predatory mites. Biocontrol Science and Technology, 2019, 29, 131-148.	1.3	4

GERBEN J MESSELINK

#	Article	IF	CITATIONS
37	Plant feeding by an omnivorous predator affects plant phenology and omnivore performance. Biological Control, 2019, 135, 66-72.	3.0	3
38	Cucurbits. , 2020, , 537-566.		3
39	The omnivorous predator Macrolophus pygmaeus induces production of plant volatiles that attract a specialist predator. Journal of Pest Science, 2022, 95, 1343-1355.	3.7	3
40	Exploring opportunities to induce epizootics in greenhouse aphid populations. Acta Horticulturae, 2017, , 371-376.	0.2	1
41	CD-ROM Review. Entomologia Experimentalis Et Applicata, 2003, 106, 71-71.	1.4	0
42	Pest management in organic greenhouse horticulture. Acta Horticulturae, 2017, , 361-370.	0.2	0
43	Sweet Peppers. , 2020, , 513-535.		Ο