
Gregory S Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are tropical fungal endophytes hyperdiverse?. Ecology Letters, 2000, 3, 267-274.	3.0	676
2	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	3.0	649
3	Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4979-4983.	3.3	633
4	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
5	EVOLUTIONARYECOLOGY OFPLANTDISEASES INNATURALECOSYSTEMS. Annual Review of Phytopathology, 2002, 40, 13-43.	3.5	464
6	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
7	The Evolutionary Ecology of Novel Plant-Pathogen Interactions. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 675-700.	3.8	292
8	Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 2015, 520, 542-544.	13.7	264
9	Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycological Research, 2001, 105, 1502-1507.	2.5	241
10	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	1.5	208
11	PHYLODIVERSITY-DEPENDENT SEEDLING MORTALITY, SIZE STRUCTURE, AND DISEASE IN A BORNEAN RAIN FOREST. Ecology, 2006, 87, S123-S131.	1.5	191
12	Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panamá. Oecologia, 2001, 127, 509-516.	0.9	139
13	Introduced Species, Disease Ecology, and Biodiversity–Disease Relationships. Trends in Ecology and Evolution, 2017, 32, 41-54.	4.2	135
14	Community composition of rootâ€associated fungi in a <i><scp>Q</scp>uercus</i> â€dominated temperate forest: "codominance―of mycorrhizal and rootâ€endophytic fungi. Ecology and Evolution, 2013, 3, 1281-1293.	0.8	133
15	WHEN THERE IS NO ESCAPE: THE EFFECTS OF NATURAL ENEMIES ON NATIVE, INVASIVE, AND NONINVASIVE PLANTS. Ecology, 2007, 88, 1210-1224.	1.5	130
16	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
17	Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evolutionary Applications, 2012, 5, 869-878.	1.5	114
18	Effects of an Introduced Bacterium on Bacterial Communities on Roots. Ecology, 1993, 74, 840-854.	1.5	97

#	Article	IF	CITATIONS
19	Susceptibility of clover species to fungal infection: the interaction of leaf surface traits and environment. American Journal of Botany, 2003, 90, 857-864.	0.8	88
20	Adult trees cause densityâ€dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecology Letters, 2016, 19, 1448-1456.	3.0	88
21	The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective. Annual Review of Phytopathology, 2016, 54, 549-578.	3.5	78
22	Polypore fungal diversity and host density in a moist tropical forest. Biodiversity and Conservation, 2002, 11, 947-957.	1.2	73
23	Pathogens promote plant diversity through a compensatory response. Ecology Letters, 2008, 11, 461-469.	3.0	71
24	Tree biodiversity in farmer cooperatives of a shade coffee landscape in western El Salvador. Agriculture, Ecosystems and Environment, 2007, 119, 145-159.	2.5	68
25	Allelopathy: a tool for weed management in forest restoration. Plant Ecology, 2012, 213, 1975-1989.	0.7	64
26	Nocturnal Fungi: Airborne Spores in the Canopy and Understory of a Tropical Rain Forest1. Biotropica, 2005, 37, 462-464.	0.8	60
27	Plant Diseases and the Conservation of Tropical Forests. BioScience, 1996, 46, 98-106.	2.2	57
28	Effect of tree host species on fungal community composition in a tropical rain forest in Panama. Diversity and Distributions, 2003, 9, 455-468.	1.9	57
29	ORIGINAL ARTICLE: Rapid evolution in a plantâ€pathogen interaction and the consequences for introduced host species. Evolutionary Applications, 2010, 3, 144-156.	1.5	56
30	THE PATCHINESS OF EPIFOLIAR FUNGI IN TROPICAL FORESTS: HOST RANGE, HOST ABUNDANCE, AND ENVIRONMENT. Ecology, 2007, 88, 575-581.	1.5	55
31	Host Specialization among Wood-Decay Polypore Fungi in a Caribbean Mangrove Forest1. Biotropica, 2002, 34, 396-404.	0.8	52
32	Host and habitat preferences of polypore fungi in Micronesian tropical flooded forests. Mycological Research, 2008, 112, 674-680.	2.5	49
33	The Impact of Plant Enemies Shows a Phylogenetic Signal. PLoS ONE, 2015, 10, e0123758.	1.1	49
34	Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Science Advances, 2019, 5, eaax5088.	4.7	48
35	Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos, 2020, 129, 457-465.	1.2	47
36	Adapterama II: universal amplicon sequencing on Illumina platforms (TaggiMatrix). PeerJ, 2019, 7, e7786.	0.9	47

#	Article	IF	CITATIONS
37	Linking Aboveground Traits to Root Traits and Local Environment: Implications of the Plant Economics Spectrum. Frontiers in Plant Science, 2019, 10, 1412.	1.7	46
38	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	5.8	46
39	Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Oecologia, 2002, 132, 278-285.	0.9	44
40	Dimensions of plant disease in tropical forests. , 2005, , 141-164.		43
41	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
42	Cooperative management and its effects on shade tree diversity, soil properties and ecosystem services of coffee plantations in western El Salvador. Agroforestry Systems, 2009, 76, 111-126.	0.9	40
43	Epifoliar fungi from Queensland, Australia. Australian Systematic Botany, 2005, 18, 265.	0.3	37
44	Beyond the tropics: forest structure in a temperate forest mapped plot. Journal of Vegetation Science, 2010, 21, 388-405.	1.1	33
45	Meteorological factors associated with abundance of airborne fungal spores over natural vegetation. Atmospheric Environment, 2017, 162, 87-99.	1.9	33
46	Densityâ€dependent disease, lifeâ€history tradeâ€offs, and the effect of leaf pathogens on a suite of coâ€occurring close relatives. Journal of Ecology, 2018, 106, 1829-1838.	1.9	33
47	Use of sonic tomography to detect and quantify wood decay in living trees. Applications in Plant Sciences, 2016, 4, 1600060.	0.8	32
48	Phylogenetic ecology applied to enrichment planting of tropical native tree species. Forest Ecology and Management, 2013, 297, 57-66.	1.4	30
49	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
50	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	27
51	Population genetic structure of the polypore Datronia caperata in fragmented mangrove forests. Mycological Research, 2004, 108, 403-410.	2.5	25
52	Contextâ€dependent mutualisms in the Joshua tree–yucca moth system shift along a climate gradient. Ecosphere, 2018, 9, e02439.	1.0	22
53	Role of ammonia and calcium in lysis of zoospores ofPhytophthora cactorum byBacillus cereus strain UW85. Experimental Mycology, 1990, 14, 1-8.	1.8	21
54	Exploring Models in the Biology Classroom. American Biology Teacher, 2016, 78, 35-42.	0.1	21

#	Article	IF	CITATIONS
55	Tree Canopies Reflect Mycorrhizal Composition. Geophysical Research Letters, 2021, 48, e2021GL092764.	1.5	21
56	A Canker Disease of Seedlings and Saplings ofTetragastris panamensis(Burseraceae) Caused byBotryosphaeria dothideain a Lowland Tropical Forest. Plant Disease, 1996, 80, 684.	0.7	21
57	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	5.8	21
58	The Effect of Rust Infection on Reproduction in a Tropical Tree (Faramea occidentalis)1. Biotropica, 1998, 30, 438-443.	0.8	20
59	Growth and survival of aerial roots of hemiepiphytes in a lower montane tropical moist forest in Panama. Journal of Tropical Ecology, 1999, 15, 651-665.	0.5	20
60	Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology, 2021, 102, e03259.	1.5	20
61	Interspecific Variation in Rates of Trunk Wound Closure in a Panamanian Lowland Forest. Biotropica, 1996, 28, 23.	0.8	19
62	Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum. Ecological Applications, 2019, 29, e01867.	1.8	19
63	Genetic population structure and distribution of a fungal polypore, <i>Datronia caperata</i> (Polyporaceae), in mangrove forests of Central America. Journal of Biogeography, 2009, 36, 266-279.	1.4	18
64	Soil calcium and plant disease in serpentine ecosystems: a test of the pathogen refuge hypothesis. Oecologia, 2007, 151, 10-21.	0.9	16
65	Phylogenetic congruence between subtropical trees and their associated fungi. Ecology and Evolution, 2016, 6, 8412-8422.	0.8	16
66	The Role of Ascospores and Conidia as Propagules in the Disease Cycle of <i>Hypoxylon mammatum</i> . Phytopathology, 1992, 82, 114.	1.1	16
67	Rarely parasitized and unparasitized species mob and alarm call to cuckoos: implications for sparrowhawk mimicry by brood parasitic cuckoos. Wilson Journal of Ornithology, 2013, 125, 627-630.	0.1	13
68	Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests. PLoS ONE, 2016, 11, e0156913.	1.1	12
69	FUNGAL SYMBIONTS OF TROPICAL TREES1. Ecology, 2007, 88, 539-540.	1.5	11
70	Fungal spore diversity, community structure, and traits across a vegetation mosaic. Fungal Ecology, 2020, 45, 100920.	0.7	11
71	<i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution, 2022, 13, 330-338.	2.2	11
72	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	3.0	11

#	Article	IF	CITATIONS
73	Multiple-scale spatial distribution of the fungal epiphyll Scolecopeltidium on Trichilia spp. in two lowland moist tropical forests. Canadian Journal of Botany, 1997, 75, 2158-2164.	1.2	10
74	Host evolutionary relationships explain tree mortality caused by a generalist pest–pathogen complex. Evolutionary Applications, 2021, 14, 1083-1094.	1.5	9
75	Parasitism to mutualism continuum for Joshua trees inoculated with different communities of arbuscular mycorrhizal fungi from a desert elevation gradient. PLoS ONE, 2021, 16, e0256068.	1.1	7
76	Early successional understory communities show idiosyncratic phylogenetic patterns in Neotropical silvicultural plantations. Forest Ecology and Management, 2016, 372, 28-34.	1.4	4
77	Can 100 must-read papers also reflect â€~who' is ecology?. Nature Ecology and Evolution, 2018, 2, 203-203.	3.4	4
78	Discursive Strategies for Climate Change Reporting: A Case Study of <i>The Mercury News</i> . Environmental Communication, 2022, 16, 505-519.	1.2	4
79	Phylogenetic Distance Metrics for Studies of Focal Species in Communities: Quantiles and Cumulative Curves. Diversity, 2022, 14, 521.	0.7	4
80	Porroca: An Emerging Disease of Coconut in Central America. Plant Disease, 2008, 92, 826-830.	0.7	2
81	Cooperative management and its effects on shade tree diversity, soil properties and ecosystem services of coffee plantations in western El Salvador. Advances in Agroforestry, 2009, , 111-126.	0.8	1