Vincenzo Pampalone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4883159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rill flow resistance law under sediment transport. Journal of Soils and Sediments, 2022, 22, 334-347.	1.5	7
2	Slope threshold in rill flow resistance. Catena, 2022, 208, 105789.	2.2	5
3	Evaluating the Effects of the Rill Longitudinal Profile on Flow Resistance Law. Water (Switzerland), 2022, 14, 326.	1.2	3
4	Closure to "Testing the Stage-Discharge Relationship in Sloping SMBF Flumes―by Francesco Giuseppe Carollo and Vincenzo Pampalone. Journal of Irrigation and Drainage Engineering - ASCE, 2022, 148, .	0.6	0
5	Measurement of Water Soil Erosion at Sparacia Experimental Area (Southern Italy): A Summary of More than Twenty Years of Scientific Activity. Water (Switzerland), 2022, 14, 1881.	1.2	3
6	Rill flow velocity and resistance law: A review. Earth-Science Reviews, 2022, 231, 104092.	4.0	12
7	Flume experiments for assessing the dye-tracing technique in rill flows. Flow Measurement and Instrumentation, 2021, 77, 101870.	1.0	8
8	Flow resistance in mobile bed rills shaped in soils with different texture. European Journal of Soil Science, 2021, 72, 2062-2075.	1.8	14
9	Analysis of rill step–pool morphology and its comparison with stream case. Earth Surface Processes and Landforms, 2021, 46, 775-790.	1.2	5
10	Testing the Stage-Discharge Relationship in Sloping SMBF Flumes. Journal of Irrigation and Drainage Engineering - ASCE, 2021, 147, 04021010.	0.6	3
11	Dissipative scaling of step-pool features. Flow Measurement and Instrumentation, 2021, 79, 101888.	1.0	1
12	Estimating flow resistance in steep slope rills. Hydrological Processes, 2021, 35, e14296.	1.1	11
13	Assessing an overland flow resistance approach under equilibrium sediment transport conditions. Catena, 2021, 207, 105578.	2.2	3
14	Testing a theoretically-based overland flow resistance law by Emmett's database. Journal of Hydrology, 2021, 603, 126862.	2.3	1
15	Roughness effect on the correction factor of surface velocity for rill flows. Hydrological Processes, 2021, 35, e14407.	1.1	8
16	Effects of Biochar Addition on Rill Flow Resistance. Water (Switzerland), 2021, 13, 3036.	1.2	3
17	Dye-tracer technique for rill flows by velocity profile measurements. Catena, 2020, 185, 104313.	2.2	12
18	Flow resistance of overland flow on a smooth bed under simulated rainfall. Catena, 2020, 187, 104351	2.2	22

VINCENZO PAMPALONE

#	Article	IF	CITATIONS
19	Flow resistance law under suspended sediment laden conditions. Flow Measurement and Instrumentation, 2020, 74, 101771.	1.0	7
20	Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin. Atmosphere, 2020, 11, 609.	1.0	13
21	A comprehensive analysis of Universal Soil Loss Equationâ€based models at the Sparacia experimental area. Hydrological Processes, 2020, 34, 1545-1557.	1.1	8
22	Estimating soil loss of given return period by USLEâ€Mâ€ŧype models. Hydrological Processes, 2020, 34, 2324.	1.1	2
23	Testing a theoretical resistance law for overland flow on a stony hillslope. Hydrological Processes, 2020, 34, 2048-2056.	1.1	15
24	Testing a theoretical resistance law for overland flow under simulated rainfall with different types of vegetation. Catena, 2020, 189, 104482.	2.2	20
25	A Comprehensive Check of Usle-Based Soil Loss Prediction Models at the Sparacia (South Italy) Site. Lecture Notes in Civil Engineering, 2020, , 3-11.	0.3	1
26	Comparing flow resistance law for fixed and mobile bed rills. Hydrological Processes, 2019, 33, 3330-3348.	1.1	28
27	Practical thresholds to distinguish erosive and rill rainfall events. Journal of Hydrology, 2019, 579, 124173.	2.3	13
28	New technique for measuring water depth in rill channels. Catena, 2019, 181, 104090.	2.2	9
29	Testing the Universal Soil Loss Equationâ€MB equation in plots in Central and South Italy. Hydrological Processes, 2019, 33, 2422-2433.	1.1	10
30	An automatic approach for rill network extraction to measure rill erosion by terrestrial and lowâ€cost unmanned aerial vehicle photogrammetry. Hydrological Processes, 2019, 33, 1883-1895.	1.1	20
31	Rill flow resistance law under equilibrium bedâ€load transport conditions. Hydrological Processes, 2019, 33, 1317-1323.	1.1	20
32	Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. Journal of Hydrology, 2019, 571, 390-405.	2.3	49
33	Dissipative analogies of step-pool features: From rills to mountain streams. Catena, 2019, 174, 235-247.	2.2	7
34	Testing a new rill flow resistance approach using the Water Erosion Prediction Project experimental database. Hydrological Processes, 2019, 33, 616-626.	1.1	19
35	Predicting soil loss in central and south Italy with a single USLE-MM model. Journal of Soils and Sediments, 2018, 18, 3365-3377.	1.5	14
36	Testing slope effect on flow resistance equation for mobile bed rills. Hydrological Processes, 2018, 32, 664-671.	1.1	49

VINCENZO PAMPALONE

#	Article	IF	CITATIONS
37	Comparing theoretically supported rainfallâ€runoff erosivity factors at the Sparacia (South Italy) experimental site. Hydrological Processes, 2018, 32, 507-515.	1.1	16
38	Comment on "Determining soil erodibility for the USLE-MM rainfall erosion model by P.I.A. Kinnell― Catena, 2018, 167, 440-443.	2.2	2
39	Experiments for testing soil texture effects on flow resistance in mobile bed rills. Catena, 2018, 171, 176-184.	2.2	32
40	Assessing dye-tracer technique for rill flow velocity measurements. Catena, 2018, 171, 523-532.	2.2	24
41	Applying the USLE Family of Models at the Sparacia (South Italy) Experimental Site. Land Degradation and Development, 2017, 28, 994-1004.	1.8	20
42	Predicting maximum annual values of event soil loss by USLE-type models. Catena, 2017, 155, 10-19.	2.2	24
43	Measuring rill erosion using structure from motion: A plot experiment. Catena, 2017, 156, 383-392.	2.2	54
44	Testing the USLE-M Family of Models at the Sparacia Experimental Site in South Italy. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	7
45	Testing the Outflow Process over a Triangular Labyrinth Weir. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, .	0.6	16
46	Closure to "New Stage-Discharge Equation for the SMBF Flume―by Francesco Giuseppe Carollo, Costanza Di Stefano, Vito Ferro, and Vincenzo Pampalone. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, 07017013.	0.6	0
47	Flow resistance equation for rills. Hydrological Processes, 2017, 31, 2793-2801.	1.1	61
48	Testing the use of an imageâ€based technique to measure gully erosion at Sparacia experimental area. Hydrological Processes, 2017, 31, 573-585.	1.1	31
49	Flow Resistance in Stepâ€Pool Rills. Vadose Zone Journal, 2017, 16, 1-10.	1.3	16
50	Comparing Two Applicative Criteria of the Soil Erosion Physical Model Concept. Vadose Zone Journal, 2017, 16, 1-10.	1.3	6
51	Testing a new sampler for measuring plot soil loss. Earth Surface Processes and Landforms, 2016, 41, 867-874.	1.2	12
52	Measuring Field Rill Erodibility by a Simplified Method. Land Degradation and Development, 2016, 27, 239-247.	1.8	6
53	New Stage-Discharge Equation for the SMBF Flume. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	0.6	23
54	Testing assumptions and procedures to empirically predict bare plot soil loss in a Mediterranean environment. Hydrological Processes, 2015, 29, 2414-2424.	1.1	9

VINCENZO PAMPALONE

#	Article	IF	CITATIONS
55	Measuring rill erosion at plot scale by a droneâ€based technology. Hydrological Processes, 2015, 29, 3802-3811.	1.1	21
56	A new version of the USLE-MM for predicting bare plot soil loss at the Sparacia (South Italy) experimental site. Hydrological Processes, 2015, 29, 4210-4219.	1.1	37
57	Modeling Rill Erosion at the Sparacia Experimental Area. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	17
58	Establishing a Soil Loss Threshold for Limiting Rilling. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	15
59	A modified applicative criterion of the physical model concept for evaluating plot soil erosion predictions. Catena, 2015, 126, 53-58.	2.2	4
60	Closure to "Sequent Depth Ratio of a B-Jump―by Francesco Giuseppe Carollo, Vito Ferro, and Vincenzo Pampalone. Journal of Hydraulic Engineering, 2013, 139, 254-255.	0.7	0
61	A new expression of the slope length factor to apply USLE-MM at Sparacia experimental area (Southern) Tj ETQq1	1 0.7843 2.2	14 rgBT /Ov
62	Field investigation of rill and ephemeral gully erosion in the Sparacia experimental area, South Italy. Catena, 2013, 101, 226-234.	2.2	112
63	New Expression of the Hydraulic Jump Roller Length. Journal of Hydraulic Engineering, 2012, 138, 995-999.	0.7	22
64	Experimental Investigation of the Outflow Process over a Triangular Labyrinth-Weir. Journal of Irrigation and Drainage Engineering - ASCE, 2012, 138, 73-79.	0.6	37
65	Estimating the USLE Soil Erodibility Factor in Sicily, South Italy. Applied Engineering in Agriculture, 2012, 28, 199-206.	0.3	57
66	Sequent Depth Ratio of a B-Jump. Journal of Hydraulic Engineering, 2011, 137, 651-658.	0.7	15
67	Using plot soil loss distribution for soil conservation design. Catena, 2011, 86, 172-177.	2.2	26
68	Predicting soil loss on moderate slopes using an empirical model for sediment concentration. Journal of Hydrology, 2011, 400, 267-273.	2.3	46
69	Effect of plot size on measured soil loss for two Italian experimental sites. Biosystems Engineering, 2011, 108, 18-27.	1.9	29
70	Statistical distribution of soil loss and sediment yield at Sparacia experimental area, Sicily. Catena, 2010, 82, 45-52.	2.2	23
71	New Solution of Classical Hydraulic Jump. Journal of Hydraulic Engineering, 2009, 135, 527-531.	0.7	37
72	Hydraulic Jumps on Rough Beds. Journal of Hydraulic Engineering, 2007, 133, 989-999.	0.7	77

#	Article	IF	CITATIONS
73	Slope threshold for overland flow resistance on sandy soils. European Journal of Soil Science, 0, , .	1.8	1