Donatella Tondi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4882975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators. Pharmaceuticals, 2022, 15, 714.	3.8	2
2	Novel Targets and Mechanisms in Antimicrobial Drug Discovery. Antibiotics, 2021, 10, 141.	3.7	5
3	Inhibition of the transcriptional repressor LexA: Withstanding drug resistance by inhibiting the bacterial mechanisms of adaptation to antimicrobials. Life Sciences, 2020, 241, 117116.	4.3	16
4	Can We Exploit β-Lactamases Intrinsic Dynamics for Designing More Effective Inhibitors?. Antibiotics, 2020, 9, 833.	3.7	6
5	Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Scientific Reports, 2020, 10, 12763.	3.3	25
6	Targeting the Class A Carbapenemase GES-5 via Virtual Screening. Biomolecules, 2020, 10, 304.	4.0	1
7	4-Amino-1,2,4-triazole-3-thione as a Promising Scaffold for the Inhibition of Serine and Metallo-Î ² -Lactamases. Pharmaceuticals, 2020, 13, 52.	3.8	13
8	Phenylboronic Acids Probing Molecular Recognition against Class A and Class C β-lactamases. Antibiotics, 2019, 8, 171.	3.7	9
9	X-ray Crystallography Deciphers the Activity of Broad-Spectrum Boronic Acid β-Lactamase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 650-655.	2.8	30
10	First virtual screening and experimental validation of inhibitors targeting GES-5 carbapenemase. Journal of Computer-Aided Molecular Design, 2019, 33, 295-305.	2.9	9
11	Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infectious Diseases, 2019, 5, 9-34.	3.8	123
12	Phenylboronic Acid Derivatives as Validated Leads Active in Clinical Strains Overexpressing KPCâ€2: A Step against Bacterial Resistance. ChemMedChem, 2018, 13, 713-724.	3.2	24
13	Structure-Based Virtual Screening for the Discovery of Novel Inhibitors of New Delhi Metallo-β-lactamase-1. ACS Medicinal Chemistry Letters, 2018, 9, 45-50.	2.8	38
14	In silico identification and experimental validation of hits active against KPC-2 β-lactamase. PLoS ONE, 2018, 13, e0203241.	2.5	9
15	Conformational Propensity and Biological Studies of Proline Mutated LR Peptides Inhibiting Human Thymidylate Synthase and Ovarian Cancer Cell Growth. Journal of Medicinal Chemistry, 2018, 61, 7374-7380.	6.4	6
16	Design, synthesis and biological evaluation of non-covalent AmpC β-lactamases inhibitors. Medicinal Chemistry Research, 2017, 26, 975-986.	2.4	11
17	SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. Phytomedicine, 2017, 29, 11-18.	5.3	34
18	Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Scientific Reports, 2017, 7, 17716.	3.3	35

Donatella Tondi

#	Article	IF	CITATIONS
19	An Improved Synthesis of CENTA, a Chromogenic Substrate for β-Lactamases. Synlett, 2016, 27, 2447-2450.	1.8	13
20	Decoding the Structural Basis For Carbapenem Hydrolysis By Class A β-lactamases: Fishing For A Pharmacophore. Current Drug Targets, 2016, 17, 983-1005.	2.1	27
21	Targeting Class A and C Serine β-Lactamases with a Broad-Spectrum Boronic Acid Derivative. Journal of Medicinal Chemistry, 2014, 57, 5449-5458.	6.4	45
22	The Inhibition of Extended Spectrum β-Lactamases: Hits and Leads. Current Medicinal Chemistry, 2014, 21, 1405-1434.	2.4	23
23	Protein–protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E542-9.	7.1	77
24	Structural study of phenyl boronic acid derivatives as AmpC β-lactamase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3416-3419.	2.2	38
25	Constrained Dansyl Derivatives Reveal Bacterial Specificity of Highly Conserved Thymidylate Synthases. ChemBioChem, 2008, 9, 779-790.	2.6	4
26	Optimizing Cell Permeation of an Antibiotic Resistance Inhibitor for Improved Efficacy. Journal of Medicinal Chemistry, 2007, 50, 5644-5654.	6.4	41
27	Thymidylate Synthase Structure, Function and Implication in Drug Discovery. Current Medicinal Chemistry, 2005, 12, 2241-2258.	2.4	91
28	Structure-Based Optimization of a Non-β-lactam Lead Results in Inhibitors That Do Not Up-Regulate β-Lactamase Expression in Cell Culture. Journal of the American Chemical Society, 2005, 127, 4632-4639.	13.7	58
29	Improving Specificity vs Bacterial Thymidylate Synthases throughN-Dansyl Modulation of Didansyltyrosine. Journal of Medicinal Chemistry, 2005, 48, 913-916.	6.4	16
30	Crystallographic studies of novel inhibitors of β-lactamases. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c248-c248.	0.3	0
31	A step further in the discovery of phthalein derivatives as Thymidylate Synthase inhibitors. Arkivoc, 2004, 2004, 382-396.	0.5	4
32	ortho-Halogen naphthaleins as specific inhibitors of Lactobacillus casei thymidylate synthase. Conformational properties and biological activity. Bioorganic and Medicinal Chemistry, 2003, 11, 951-963.	3.0	8
33	Structure-based studies on species-specific inhibition of thymidylate synthase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 206-214.	3.8	34
34	Structure-based design and in-parallel synthesis of inhibitors of AmpC β-lactamase. Chemistry and Biology, 2001, 8, 593-610.	6.0	45
35	Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase1,21Escherichia coli thymidylate synthase numbering is used unless otherwise noted.2PDB coordinates have been deposited with the RCSB with accession ID: 1JGO Chemistry and Biology, 2001, 8, 981-995	6.0	28
36	Structure-based discovery and in-parallel optimization of novelcompetitive inhibitors of thymidylate synthase. Chemistry and Biology, 1999, 6, 319-331.	6.0	103

#	Article	IF	CITATIONS
37	Separation, structural determination and biological evaluation of the thymidylate synthase inhibitor 3,3â€Diâ€(4′â€hydroxyphenyl)â€6(7)â€chloroâ€1â€oxoâ€1 <i>H</i> ,3 <i>H</i> â€naphtho[1,8â€ <i>cd</i>]py Heterocyclic Chemistry, 1999, 36, 1043-1048.	ra ¤. dourn	al 9f
38	Phthalein Derivatives as a New Tool for Selectivity in Thymidylate Synthase Inhibition. Journal of Medicinal Chemistry, 1999, 42, 2112-2124.	6.4	23
39	Structure-Based Design of Inhibitors Specific for Bacterial Thymidylate Synthase,. Biochemistry, 1999, 38, 1607-1617.	2.5	49
40	Mono- and Disubstituted-3,8-diazabicyclo[3.2.1]octane Derivatives as Analgesics Structurally Related to Epibatidine:Â Synthesis, Activity, and Modeling. Journal of Medicinal Chemistry, 1998, 41, 674-681.	6.4	56
41	Conformational analysis of phthalein derivatives acting as thymidylate synthase inhibitors by means of 1H NMR and quantum chemical calculations. Bioorganic and Medicinal Chemistry, 1996, 4, 1783-1794.	3.0	14
42	Naphthalimido derivatives as antifolate thymidylate synthase inhibitors. European Journal of Medicinal Chemistry, 1996, 31, 1011-1016.	5.5	8