Jozsef Csicsvari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4881925/publications.pdf

Version: 2024-02-01

48 12,358 35 papers citations h-index

53 53 53 8582 all docs docs citations times ranked citing authors

48

g-index

#	Article	IF	Citations
1	Accuracy of Tetrode Spike Separation as Determined by Simultaneous Intracellular and Extracellular Measurements. Journal of Neurophysiology, 2000, 84, 401-414.	0.9	1,003
2	Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat. Neuron, 2003, 37, 311-322.	3.8	872
3	Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat. Journal of Neuroscience, 1999, 19, 274-287.	1.7	851
4	Intracellular Features Predicted by Extracellular Recordings in the Hippocampus In Vivo. Journal of Neurophysiology, 2000, 84, 390-400.	0.9	841
5	Communication between neocortex and hippocampus during sleep in rodents. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2065-2069.	3.3	803
6	Organization of cell assemblies in the hippocampus. Nature, 2003, 424, 552-556.	13.7	788
7	Replay and Time Compression of Recurring Spike Sequences in the Hippocampus. Journal of Neuroscience, 1999, 19, 9497-9507.	1.7	751
8	The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nature Neuroscience, 2010, 13, 995-1002.	7.1	595
9	Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus. Neuron, 1998, 21, 179-189.	3.8	552
10	Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events. Neuron, 2000, 28, 585-594.	3.8	423
11	Disrupted Dopamine Transmission and the Emergence of Exaggerated Beta Oscillations in Subthalamic Nucleus and Cerebral Cortex. Journal of Neuroscience, 2008, 28, 4795-4806.	1.7	413
12	Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations. Journal of Neuroscience, 2005, 25, 9782-9793.	1.7	400
13	Massively Parallel Recording of Unit and Local Field Potentials With Silicon-Based Electrodes. Journal of Neurophysiology, 2003, 90, 1314-1323.	0.9	371
14	Play it again: reactivation of waking experience and memory. Trends in Neurosciences, 2010, 33, 220-229.	4.2	361
15	Sustained activation of hippocampal pyramidal cells by  space clamping' in a running wheel. European Journal of Neuroscience, 1999, 11, 344-352.	1.2	260
16	Interactions between Hippocampus and Medial Septum during Sharp Waves and Theta Oscillation in the Behaving Rat. Journal of Neuroscience, 1999, 19, 6191-6199.	1.7	256
17	Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nature Neuroscience, 2008, 11, 209-215.	7.1	254
18	Relationships between Hippocampal Sharp Waves, Ripples, and Fast Gamma Oscillation: Influence of Dentate and Entorhinal Cortical Activity. Journal of Neuroscience, 2011, 31, 8605-8616.	1.7	237

#	Article	IF	CITATIONS
19	Place-Selective Firing of CA1 Pyramidal Cells during Sharp Wave/Ripple Network Patterns in Exploratory Behavior. Neuron, 2006, 49, 143-155.	3.8	234
20	lvy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity. Neuron, 2008, 57, 917-929.	3.8	221
21	Theta phase–specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nature Neuroscience, 2008, 11, 587-594.	7.1	183
22	The entorhinal cognitive map is attracted to goals. Science, 2019, 363, 1443-1447.	6.0	154
23	Gamma Oscillatory Firing Reveals Distinct Populations of Pyramidal Cells in the CA1 Region of the Hippocampus. Journal of Neuroscience, 2008, 28, 2274-2286.	1.7	134
24	High-Frequency Network Activity, Global Increase in Neuronal Activity, and Synchrony Expansion Precede Epileptic Seizures <i>In Vitro</i> Journal of Neuroscience, 2010, 30, 5690-5701.	1.7	131
25	Placeâ€selective firing contributes to the reverseâ€order reactivation of CA1 pyramidal cells during sharp waves in openâ€field exploration. European Journal of Neuroscience, 2007, 26, 704-716.	1.2	126
26	Dynamic Reconfiguration of Hippocampal Interneuron Circuits during Spatial Learning. Neuron, 2013, 78, 166-180.	3.8	117
27	Firing rate and theta-phase coding by hippocampal pyramidal neurons during â€~space clamping'. European Journal of Neuroscience, 1999, 11, 4373-4380.	1.2	109
28	Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice InÂVivo. Neuron, 2017, 93, 308-314.	3.8	106
29	Assembly-Specific Disruption of Hippocampal Replay Leads to Selective Memory Deficit. Neuron, 2020, 106, 291-300.e6.	3.8	105
30	Activity-Dependent Control of Neuronal Output by Local and Global Dendritic Spike Attenuation. Neuron, 2009, 61, 906-916.	3.8	88
31	Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion. Neuron, 2019, 102, 450-461.e7.	3.8	85
32	Assembly Responses of Hippocampal CA1 Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-Arm Maze. Neuron, 2019, 101, 119-132.e4.	3.8	80
33	Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching. Neuron, 2020, 106, 154-165.e6.	3.8	70
34	Changes in Functional Connectivity within the Rat Striatopallidal Axis during Global Brain Activation In Vivo. Journal of Neuroscience, 2006, 26, 6318-6329.	1.7	68
35	Hippocampal Place Cells Can Encode Multiple Trial-Dependent Features through Rate Remapping. Journal of Neuroscience, 2012, 32, 14752-14766.	1.7	53
36	Activity-dependent plasticity of hippocampal place maps. Nature Communications, 2016, 7, 11824.	5.8	42

#	Article	IF	CITATIONS
37	Behavior-Dependent States of the Hippocampal Network Affect Functional Clustering of Neurons. Journal of Neuroscience, 2001, 21, RC145-RC145.	1.7	37
38	Sharp wave/ripple network oscillations and learning-associated hippocampal maps. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120528.	1.8	36
39	Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus. PLoS ONE, 2016, 11, e0164675.	1.1	33
40	Disruptedâ€inâ€schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus, 2019, 29, 802-816.	0.9	28
41	The application of printed circuit board technology for fabrication of multi-channel micro-drives. Journal of Neuroscience Methods, 2001, 105, 105-110.	1.3	26
42	Rate Remapping: When the Code Goes beyond Space. Neuron, 2010, 68, 1015-1016.	3.8	16
43	Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning. ENeuro, 2018, 5, ENEURO.0087-18.2018.	0.9	14
44	Inhibitory interneurons and network oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18079-18080.	3.3	9
45	The medial entorhinal cortex keeps Up. Nature Neuroscience, 2012, 15, 1471-1472.	7.1	6
46	Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. ELife, 2020, 9, .	2.8	6
47	Learning by Example in the Hippocampus. Neuron, 2014, 83, 8-10.	3.8	2
48	Turning heads to remember places. Nature Neuroscience, 2014, 17, 643-644.	7.1	1