Malgorazata Kloc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4881674/publications.pdf

Version: 2024-02-01

159585 175258 3,376 125 30 52 citations g-index h-index papers 154 154 154 3035 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanisms of Subcellular mRNA Localization. Cell, 2002, 108, 533-544.	28.9	300
2	The Balbiani Body and Germ Cell Determinants: 150 Years Later. Current Topics in Developmental Biology, 2004, 59, 1-36.	2.2	189
3	Formation, architecture and polarity of female germline cyst in Xenopus. Developmental Biology, 2004, 266, 43-61.	2.0	162
4	Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA. Science, 1994, 265, 1101-1103.	12.6	135
5	Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopusoocytes. Development (Cambridge), 2005, 132, 3445-3457.	2.5	131
6	Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes. Science, 1993, 262, 1712-1714.	12.6	126
7	RNA localization mechanisms in oocytes. Journal of Cell Science, 2005, 118, 269-282.	2.0	123
8	Three-Dimensional Ultrastructural Analysis of RNA Distribution within Germinal Granules of Xenopus. Developmental Biology, 2002, 241, 79-93.	2.0	105
9	Contribution of METRO pathway localized molecules to the organization of the germ cell lineage. Mechanisms of Development, 1998, 75, 81-93.	1.7	84
10	Leveraging nanochannels for universal, zero-order drug delivery in vivo. Journal of Controlled Release, 2013, 172, 1011-1019.	9.9	75
11	Chromatin elimination $\hat{a}\in$ an oddity or a common mechanism in differentiation and development?. Differentiation, 2001, 68, 84-91.	1.9	71
12	Balbiani body, nuage and sponge bodies – The germ plasm pathway players. Arthropod Structure and Development, 2014, 43, 341-348.	1.4	68
13	Mouse early oocytes are transiently polar: Three-dimensional and ultrastructural analysis. Experimental Cell Research, 2008, 314, 3245-3254.	2.6	58
14	Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: Three-dimensional and ultrastructural analysis. Experimental Cell Research, 2007, 313, 1639-1651.	2.6	54
15	Chronic allograft rejection: A significant hurdle to transplant success. Burns and Trauma, 2014, 2, 3.	0.7	54
16	Macrophage functions in wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 99-109.	2.7	52
17	Development of child immunity in the context of COVID-19 pandemic. Clinical Immunology, 2020, 217, 108510.	3.2	48
18	Magnetic Field Changes Macrophage Phenotype. Biophysical Journal, 2018, 114, 2001-2013.	0.5	47

#	Article	IF	CITATIONS
19	The Role of Genetic Sex and Mitochondria in Response to COVID-19 Infection. International Archives of Allergy and Immunology, 2020, 181, 629-634.	2.1	45
20	The Balbiani body: Asymmetry in the mammalian oocyte. Genesis, 2000, 26, 208-212.	1.6	42
21	ROCK inhibition impedes macrophage polarity and functions. Cellular Immunology, 2016, 300, 54-62.	3.0	42
22	Selection of mitochondria in female germline cells: is Balbiani body implicated in this process?. Journal of Assisted Reproduction and Genetics, 2017, 34, 1405-1412.	2.5	42
23	Balbiani cytoplasm in oocytes of a primitive fish, the sturgeon Acipenser gueldenstaedtii, and its potential homology to the Balbiani body (mitochondrial cloud) of Xenopus laevis oocytes. Cell and Tissue Research, 2007, 329, 137-145.	2.9	38
24	Early Development of the Gonads: Origin and Differentiation of the Somatic Cells of the Genital Ridges. Results and Problems in Cell Differentiation, 2016, 58, 1-22.	0.7	35
25	How nicotine can inhibit cytokine storm in the lungs and prevent or lessen the severity of COVID-19 infection?. Immunology Letters, 2020, 224, 28-29.	2.5	35
26	The Emerging Role of Nanotechnology in Cell and Organ Transplantation. Transplantation, 2016, 100, 1629-1638.	1.0	33
27	Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3. Experimental Cell Research, 2016, 341, 225-236.	2.6	33
28	Binary function of mRNA. Biochimie, 2011, 93, 1955-1961.	2.6	32
29	Transcriptional profiling validates involvement of extracellular matrix and proteinases genes in mouse gonad development. Mechanisms of Development, 2018, 149, 9-19.	1.7	31
30	Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation. Biomaterials, 2020, 257, 120232.	11.4	31
31	The newly found functions of MTOC in immunological response. Journal of Leukocyte Biology, 2013, 95, 417-430.	3.3	30
32	Macrophages as Effectors of Acute and Chronic Allograft Injury. Current Transplantation Reports, 2016, 3, 303-312.	2.0	29
33	Macrophage/monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts. Journal of Heart and Lung Transplantation, 2017, 36, 340-354.	0.6	29
34	Effects of vitamin D on macrophages and myeloid-derived suppressor cells (MDSCs) hyperinflammatory response in the lungs of COVID-19 patients. Cellular Immunology, 2021, 360, 104259.	3.0	29
35	The Central Role of Cadherins in Gonad Development, Reproduction, and Fertility. International Journal of Molecular Sciences, 2020, 21, 8264.	4.1	27
36	Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis. Journal of Developmental Biology, 2016, 4, 2.	1.7	26

#	Article	IF	CITATIONS
37	Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads. Differentiation, 2018, 100, 46-56.	1.9	24
38	Dissonant response of MO/M2 and M1 bone-marrow-derived macrophages to RhoA pathway interference. Cell and Tissue Research, 2016, 366, 707-720.	2.9	23
39	Rho-specific Guanine nucleotide exchange factors (Rho-GEFs) inhibition affects macrophage phenotype and disrupts Golgi complex. International Journal of Biochemistry and Cell Biology, 2017, 93, 12-24.	2.8	23
40	Development of Xenopus laevis bipotential gonads into testis or ovary is driven by sex-specific cell-cell interactions, proliferation rate, cell migration and deposition of extracellular matrix. Developmental Biology, 2017, 432, 298-310.	2.0	23
41	The phenotype of peritoneal mouse macrophages depends on the mitochondria and ATP/ADP homeostasis. Cellular Immunology, 2018, 324, 1-7.	3.0	23
42	Female germline stem cell niches of earwigs are structurally simple and different from those of <i>Drosophila melanogaster</i> . Journal of Morphology, 2010, 271, 634-640.	1.2	21
43	CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition. Developmental Biology, 2014, 396, 67-80.	2.0	20
44	Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology, 2018, 223, 634-647.	1.9	20
45	Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis. Development Genes and Evolution, 2019, 229, 53-72.	0.9	20
46	Structural messenger RNA contains cytokeratin polymerization and depolymerization signals. Cell and Tissue Research, 2011, 346, 209-222.	2.9	19
47	Pericytes, Microvasular Dysfunction, and Chronic Rejection. Transplantation, 2015, 99, 658-667.	1.0	19
48	Tissue-specific knockout of E-cadherin (Cdh1) in developing mouse gonads causes germ cells loss. Reproduction, 2019, 158, 149-159.	2.6	19
49	Emerging novel functions of RNAs, and binary phenotype?. Developmental Biology, 2008, 317, 401-404.	2.0	18
50	Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad. Mechanisms of Development, 2017, 147, 17-27.	1.7	18
51	Cover Image, Volume 13, Issue 1. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, .	2.7	18
52	Exaptation of Retroviral Syncytin for Development of Syncytialized Placenta, Its Limited Homology to the SARS-CoV-2 Spike Protein and Arguments against Disturbing Narrative in the Context of COVID-19 Vaccination. Biology, 2021, 10, 238.	2.8	18
53	Teachings from the egg: New and unexpected functions of RNAs. Molecular Reproduction and Development, 2009, 76, 922-932.	2.0	17
54	Polarity and Asymmetry During Mouse Oogenesis and Oocyte Maturation. Results and Problems in Cell Differentiation, 2012, 55, 23-44.	0.7	17

#	Article	lF	Citations
55	Asymmetric Divisions in Oogenesis. Results and Problems in Cell Differentiation, 2017, 61, 211-228.	0.7	17
56	Role of Macrophages and RhoA Pathway in Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 216.	4.1	17
57	Virus interactions with the actin cytoskeleton—what we know and do not know about SARS-CoV-2. Archives of Virology, 2022, 167, 737-749.	2.1	17
58	Abrogation of Chronic Rejection in Rat Model System Involves Modulation of the mTORC1 and mTORC2 Pathways. Transplantation, 2013, 96, 782-790.	1.0	15
59	The multiple sclerosis (MS) drugs as a potential treatment of ARDS in COVID-19 patients. Multiple Sclerosis and Related Disorders, 2020, 45, 102437.	2.0	15
60	Plakophilin-3 Catenin Associates with the ETV1/ER81 Transcription Factor to Positively Modulate Gene Activity. PLoS ONE, 2014, 9, e86784.	2.5	15
61	Monocyte–Macrophage Lineage Cell Fusion. International Journal of Molecular Sciences, 2022, 23, 6553.	4.1	15
62	Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transplant Immunology, 2018, 50, 15-25.	1.2	14
63	New Insights into Cellular Functions of Nuclear Actin. Biology, 2021, 10, 304.	2.8	14
64	Rock1 Inhibitor Abrogates Chronic Rejection in Rat Cardiac Model System. Open Journal of Organ Transplant Surgery, 2012, 02, 46-51.	0.3	14
65	Electron microscopy, immunostaining, cytoskeleton visualization, in situ hybridization, and three-dimensional reconstruction of Xenopus oocytes. Methods, 2010, 51, 11-19.	3.8	13
66	Bidder's organ – structure, development and function. International Journal of Developmental Biology, 2014, 58, 819-827.	0.6	13
67	Centroid, a novel putative DEAD-box RNA helicase maternal mRNA, is localized in the mitochondrial cloud in Xenopus laevis oocytes. International Journal of Developmental Biology, 2007, 51, 701-706.	0.6	13
68	From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Frontiers in Immunology, 2021, 12, 690623.	4.8	12
69	xl21: A localized maternal transcript inXenopus laevis. Molecular Reproduction and Development, 1991, 28, 341-345.	2.0	11
70	Evolutionary trend for metamery reduction and gonad shortening in Anurans revealed by comparison of gonad development. International Journal of Developmental Biology, 2014, 58, 929-934.	0.6	11
71	Divergent roles of the Wnt/PCP Formin Daam1 in renal ciliogenesis. PLoS ONE, 2019, 14, e0221698.	2.5	11
72	Macrophage Proinflammatory Responses to Microorganisms and Transplanted Organs. International Journal of Molecular Sciences, 2020, 21, 9669.	4.1	11

#	Article	IF	Citations
73	The Wnt/PCP formin Daam1 drives cell-cell adhesion during nephron development. Cell Reports, 2021, 36, 109340.	6.4	11
74	RhoA Pathway and Actin Regulation of the Golgi/Centriole Complex. Results and Problems in Cell Differentiation, 2019, 67, 81-93.	0.7	11
75	Macrophages and RhoA Pathway in Transplanted Organs. Results and Problems in Cell Differentiation, 2017, 62, 365-376.	0.7	10
76	N-Cadherin Is Critical for the Survival of Germ Cells, the Formation of Steroidogenic Cells, and the Architecture of Developing Mouse Gonads. Cells, 2019, 8, 1610.	4.1	10
77	Inverse relationship between TCTP/RhoA and p53//cyclin A/actin expression in ovarian cancer cells. Folia Histochemica Et Cytobiologica, 2012, 50, 358-367.	1.5	10
78	Early humoral immune response to two doses of severe acute respiratory syndrome coronavirus 2 vaccine in a diverse group of solid organ transplant candidates and recipients. Clinical Transplantation, 2022, 36, e14600.	1.6	10
79	Macrophage phenotype bioengineered by magnetic, genetic, or pharmacologic interference. Immunologic Research, 2019, 67, 1-11.	2.9	9
80	Effects of genistein on insulin pathway-related genes in mouse differentiated myoblast C2C12 cell line: evidence for two independent modes of action. Folia Histochemica Et Cytobiologica, 2018, 56, 123-132.	1.5	9
81	Early oogenesis in the shortâ€tailed fruit bat <i>Carollia perspicillata</i> : Transient germ cell cysts and noncanonical intercellular bridges. Genesis, 2012, 50, 18-27.	1.6	8
82	Control of timing of embryonic M-phase entry and exit is differentially sensitive to CDK1 and PP2A balance. International Journal of Developmental Biology, 2014, 58, 767-774.	0.6	8
83	Matrix metalloproteinase-dependent regulation of extracellular matrix shapes the structure of sexually differentiating mouse gonads. Differentiation, 2019, 106, 23-34.	1.9	8
84	Fingolimod (FTY720) prevents chronic rejection of rodent cardiac allografts through inhibition of the RhoA pathway. Transplant Immunology, 2021, 65, 101347.	1.2	8
85	Side effects of gadolinium MRI contrast agents. Pediatria I Medycyna Rodzinna, 2020, 16, 49-52.	0.1	8
86	Natural genetic engineering: A programmed chromosome/DNA elimination. Developmental Biology, 2022, 486, 15-25.	2.0	8
87	Elusive Role of TCTP Protein and mRNA in Cell Cycle and Cytoskeleton Regulation. Results and Problems in Cell Differentiation, 2017, 64, 217-225.	0.7	7
88	Macrophages in diabetes mellitus (DM) and COVID-19: do they trigger DM?. Journal of Diabetes and Metabolic Disorders, 2020, 19, 2045-2048.	1.9	7
89	Siponimod (Mayzent) Downregulates RhoA and Cell Surface Expression of the S1P1 and CX3CR1 Receptors in Mouse RAW 264.7 Macrophages. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 19.	2.3	7
90	Aquatic models of human ciliary diseases. Genesis, 2021, 59, e23410.	1.6	7

#	Article	IF	Citations
91	RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. Biology, 2021, 10, 70.	2.8	7
92	Differential subcellular sequestration of proapoptotic and antiapoptotic proteins and colocalization of Bclâ€x _L with the germ plasm, in <i>Xenopus laevis</i>) oocytes. Genesis, 2007, 45, 523-531.	1.6	6
93	Gametic synapses, nanotubes and sperm RNAs – Redefining the origin of maternal determinants. Mechanisms of Development, 2016, 141, 1-3.	1.7	6
94	Characterisation of white and yellow eye colour mutant strains of house cricket, Acheta domesticus. PLoS ONE, 2019, 14, e0216281.	2.5	6
95	The Effect of Magnetic Field Gradient and Gadolinium-Based MRI Contrast Agent Dotarem on Mouse Macrophages. Cells, 2022, 11, 757.	4.1	6
96	Basic Science B.D. (before Drosophila): Cytology at Warsaw University (Poland). International Journal of Developmental Biology, 2008, 52, 115-119.	0.6	5
97	Role of Cdc6 During Oogenesis and Early Embryo Development in Mouse and Xenopus laevis. Results and Problems in Cell Differentiation, 2017, 59, 201-211.	0.7	5
98	Exogenous Molecule and Organelle Delivery in Oogenesis. Results and Problems in Cell Differentiation, 2017, 63, 3-16.	0.7	4
99	A 10-Year-Old Girl With Late Acute Lymphoblastic Leukemia Recurrence Diagnosed With COVID-19 and Treated With Remdesivir. Journal of Pediatric Hematology/Oncology, 2021, Publish Ahead of Print, .	0.6	4
100	Flexibility vs. robustness in cell cycle regulation of timing of M-phase entry in Xenopus laevis embryo cell-free extract. International Journal of Developmental Biology, 2016, 60, 305-314.	0.6	4
101	The Rove Beetle Creophilus maxillosus as a Model System to Study Asymmetric Division, Oocyte Specification, and the Germ-Somatic Cell Signaling. Results and Problems in Cell Differentiation, 2019, 68, 217-230.	0.7	4
102	Coinhibition of mTORC1/mTORC2 and RhoA /ROCK pathways prevents chronic rejection of rat cardiac allografts. Transplantation Reports, 2018, 3, 21-28.	0.4	3
103	Mitotic timing is differentially controlled by A- and B-type cyclins and by CDC6 associated with a <i>bona fide</i> CDK inhibitor Xic1 in <i>Xenopus laevis</i> cell-free extract. International Journal of Developmental Biology, 2021, 65, 487-496.	0.6	3
104	The Role of Monocytes and Macrophages in Homeostasis and Disease and Novel Avenues for Putative Treatments. International Journal of Molecular Sciences, 2021, 22, 4927.	4.1	2
105	Expression of primary cilia-related genes in developing mouse gonads. International Journal of Developmental Biology, 2019, 63, 615-621.	0.6	2
106	Noncanonical intercellular communication in immune response. World Journal of Immunology, 2016, 6, 67.	0.5	2
107	Translationally Controlled Tumor-Associated Protein. Biochemistry Research International, 2012, 2012, 1-1.	3.3	1
108	The Macrophages and Intestinal Symbiosis. Results and Problems in Cell Differentiation, 2020, 69, 605-616.	0.7	1

#	Article	IF	CITATIONS
109	SARS-CoV-2 Subversion of the Antiviral Interferon Alpha-Response of Lung Macrophages?. Journal of Immunological Sciences, 2020, 4, 13-16.	1.1	1
110	TCTP Silencing in Ovarian Cancer Cells Results in Actin Cytoskeleton Remodeling and Motility Increase. Journal of Analytical Oncology, 2015, 4, 122-131.	0.1	1
111	Metamorphosis and Organogenesis., 0,, 187-187.		1
112	Commentary: Trained immunity and beyond: the not-yet lost chance to win with COVID-19. Journal of Lung Health and Diseases, 2020, 4, 8-10.	0.2	1
113	Guest Editor's Introduction. Methods, 2010, 51, 1-2.	3.8	0
114	Developmental Herpetology - state of the art of amphibian and reptile developmental biology. International Journal of Developmental Biology, 2014, 58, 719-721.	0.6	0
115	Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes. Methods in Molecular Biology, 2016, 1457, 179-190.	0.9	0
116	Oocyte and Early Embryo. , 0, , 1-1.		0
117	Novel Techniques and Approaches. , 0, , 309-309.		0
118	Midblastula Transition, Gastrulation, and Neurulation. , 0, , 101-101.		0
119	Cyclin B. , 2016, , 1-6.		0
120	Cyclin B. , 2018, , 1259-1264.		0
121	Structural mRNAs. , 2018, , 5209-5213.		0
122	Double face of stem cells in paediatrics: therapeutic applications of mesenchymal stem cells and threats from cancer stem cells. Pediatria I Medycyna Rodzinna, 2020, 16, 171-174.	0.1	0
123	Cell-Cell Adhesion During Nephron Development is Driven by the Wnt/PCP Formin Daam1. SSRN Electronic Journal, 0, , .	0.4	0
124	Desmoplakin (Dsp) conditional knockout in NR5A1+ somatic cells affects germ cell survival in developing mouse gonads. Reproduction, 2022, 163, 199-207.	2.6	0
125	Remembering Professor Bohdan Matuszewski. Developmental Biology, 2022, 487, 21-21.	2.0	0