Argye E Hillis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4881315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Re-examining the brain regions crucial for orchestrating speech articulation. Brain, 2004, 127, 1479-1487.	7.6	407
2	Anatomy of Spatial Attention: Insights from Perfusion Imaging and Hemispatial Neglect in Acute Stroke. Journal of Neuroscience, 2005, 25, 3161-3167.	3.6	296
3	Selective impairment of semantics in lexical processing. Cognitive Neuropsychology, 1990, 7, 191-243.	1.1	283
4	Aphasia. Neurology, 2007, 69, 200-213.	1.1	278
5	Spatial representation of words in the brain implied by studies of a unilateral neglect patient. Nature, 1990, 346, 267-269.	27.8	240
6	Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke. Lancet Neurology, The, 2010, 9, 895-905.	10.2	240
7	Anatomy of aphasia revisited. Brain, 2018, 141, 848-862.	7.6	235
8	Neural regions essential for distinct cognitive processes underlying picture naming. Brain, 2007, 130, 1408-1422.	7.6	228
9	Hypoperfusion of Wernicke's area predicts severity of semantic deficit in acute stroke. Annals of Neurology, 2001, 50, 561-566.	5.3	198
10	Deterioration of naming nouns versus verbs in primary progressive aphasia. Annals of Neurology, 2004, 55, 268-275.	5.3	196
11	Restoring Cerebral Blood Flow Reveals Neural Regions Critical for Naming. Journal of Neuroscience, 2006, 26, 8069-8073.	3.6	169
12	Neural Substrates of Visuospatial Processing in Distinct Reference Frames: Evidence from Unilateral Spatial Neglect. Journal of Cognitive Neuroscience, 2009, 21, 2073-2084.	2.3	150
13	Inability to empathize: brain lesions that disrupt sharing and understanding another's emotions. Brain, 2014, 137, 981-997.	7.6	143
14	Modality-Specific Deterioration in Naming Verbs in Nonfluent Primary Progressive Aphasia. Journal of Cognitive Neuroscience, 2002, 14, 1099-1108.	2.3	133
15	The roles of the "visual word form area―in reading. NeuroImage, 2005, 24, 548-559.	4.2	130
16	Right hemispatial neglect: Frequency and characterization following acute left hemisphere stroke. Brain and Cognition, 2007, 64, 50-59.	1.8	129
17	Mechanisms of early aphasia recovery. Aphasiology, 2002, 16, 885-895.	2.2	124
18	Reperfusion of Specific Brain Regions by Raising Blood Pressure Restores Selective Language Functions in Subacute Stroke. Brain and Language, 2001, 79, 495-510.	1.6	121

#	Article	IF	CITATIONS
19	Critical role of the right uncinate fasciculus in emotional empathy. Annals of Neurology, 2015, 77, 68-74.	5.3	110
20	Variability in subcortical aphasia is due to variable sites of cortical hypoperfusion. Brain and Language, 2004, 89, 524-530.	1.6	105
21	Predicting recovery in acute poststroke aphasia. Annals of Neurology, 2018, 83, 612-622.	5.3	104
22	A framework for interpreting distinct patterns of hemispatial neglect. Neurocase, 1995, 1, 189-207.	0.6	103
23	Neural regions essential for reading and spelling of words and pseudowords. Annals of Neurology, 2007, 62, 481-492.	5.3	100
24	Temporal lobe networks supporting the comprehension of spoken words. Brain, 2017, 140, 2370-2380.	7.6	98
25	Neurobiology of Unilateral Spatial Neglect. Neuroscientist, 2006, 12, 153-163.	3.5	90
26	Treatment of naming disorders: New issues regarding old therapies. Journal of the International Neuropsychological Society, 1998, 4, 648-660.	1.8	88
27	Where (in the brain) do semantic errors come from?. Cortex, 2009, 45, 641-649.	2.4	82
28	Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: Preliminary results and challenges. Aphasiology, 2014, 28, 1112-1130.	2.2	76
29	Stroke Recovery: Surprising Influences and Residual Consequences. Advances in Medicine, 2014, 2014, 1-10.	0.8	75
30	Change in Perfusion in Acute Nondominant Hemisphere Stroke May Be Better Estimated by Tests of Hemispatial Neglect Than by the National Institutes of Health Stroke Scale. Stroke, 2003, 34, 2392-2396.	2.0	74
31	Neural bases of orthographic long-term memory and working memory in dysgraphia. Brain, 2016, 139, 588-604.	7.6	74
32	Dissociation between egocentric and allocentric visuospatial and tactile neglect in acute stroke. Cortex, 2008, 44, 1215-1220.	2.4	73
33	Pretreatment Blood–Brain Barrier Damage and Post-Treatment Intracranial Hemorrhage in Patients Receiving Intravenous Tissue-Type Plasminogen Activator. Stroke, 2014, 45, 2030-2035.	2.0	73
34	Speech and language functions that require a functioning Broca's area. Brain and Language, 2008, 105, 50-58.	1.6	69
35	Naming and comprehension in primary progressive aphasia: The influence of grammatical word class. Aphasiology, 2006, 20, 246-256.	2.2	68
36	Cortical and structural onnectivity damage correlated with impaired syntactic processing in aphasia. Human Brain Mapping, 2019, 40, 2153-2173.	3.6	67

#	Article	IF	CITATIONS
37	Neural regions essential for writing verbs. Nature Neuroscience, 2003, 6, 19-20.	14.8	65
38	Cognitive Recovery in Idiopathic Normal Pressure Hydrocephalus After Shunt. Cognitive and Behavioral Neurology, 2004, 17, 179-184.	0.9	63
39	Ischemia in Broca Area Is Associated With Broca Aphasia More Reliably in Acute Than in Chronic Stroke. Stroke, 2010, 41, 325-330.	2.0	59
40	Neuroimaging in aphasia treatment research: Quantifying brain lesions after stroke. NeuroImage, 2013, 73, 208-214.	4.2	59
41	The effect of tDCS on functional connectivity in primary progressive aphasia. NeuroImage: Clinical, 2018, 19, 703-715.	2.7	57
42	Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiology of Disease, 2016, 94, 55-62.	4.4	55
43	Recovery from aphasia following brain injury: the role of reorganization. Progress in Brain Research, 2006, 157, 143-156.	1.4	54
44	Tools for multiple granularity analysis of brain MRI data for individualized image analysis. NeuroImage, 2014, 101, 168-176.	4.2	52
45	Neural Correlates of Modality-specific Spatial Extinction. Journal of Cognitive Neuroscience, 2006, 18, 1889-1898.	2.3	51
46	A brief assessment of object semantics in primary progressive aphasia. Aphasiology, 2015, 29, 488-505.	2.2	51
47	Auditory comprehension: Is multiple choice really good enough?. Brain and Language, 2004, 89, 3-8.	1.6	50
48	Asyntactic comprehension, working memory, and acute ischemia in Broca's area versus angular gyrus. Cortex, 2012, 48, 1288-1297.	2.4	50
49	Cerebellar tDCS: A Novel Approach to Augment Language Treatment Post-stroke. Frontiers in Human Neuroscience, 2016, 10, 695.	2.0	48
50	The Crucial Role of Posterior Frontal Regions in Modality Specific Components of the Spelling Process. Neurocase, 2004, 10, 175-187.	0.6	47
51	Picturing the Size and Site of Stroke With an Expanded National Institutes of Health Stroke Scale. Stroke, 2016, 47, 1459-1465.	2.0	46
52	Distinct mechanisms and timing of language recovery after stroke. Cognitive Neuropsychology, 2013, 30, 454-475.	1.1	45
53	Mapping Language Networks Using the Structural and Dynamic Brain Connectomes. ENeuro, 2017, 4, ENEURO.0204-17.2017.	1.9	45
54	An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Review of Neurotherapeutics, 2017, 17, 1091-1107.	2.8	42

#	Article	IF	CITATIONS
55	Stealing Cookies in the Twenty-First Century: Measures of Spoken Narrative in Healthy Versus Speakers With Aphasia. American Journal of Speech-Language Pathology, 2019, 28, 321-329.	1.8	41
56	Long-range fibre damage in small vessel brain disease affects aphasia severity. Brain, 2019, 142, 3190-3201.	7.6	40
57	Neural Networks Essential for Naming and Word Comprehension. Cognitive and Behavioral Neurology, 2007, 20, 25-30.	0.9	39
58	Right Hemisphere Regions Critical for Expression of Emotion Through Prosody. Frontiers in Neurology, 2018, 9, 224.	2.4	39
59	Important considerations in lesionâ€symptom mapping: Illustrations from studies of word comprehension. Human Brain Mapping, 2017, 38, 2990-3000.	3.6	38
60	Neural substrates of the cognitive processes underlying spelling: Evidence from MR diffusion and perfusion imaging. Aphasiology, 2002, 16, 425-438.	2.2	37
61	A neural network critical for spelling. Annals of Neurology, 2009, 66, 249-253.	5.3	37
62	Cognitive Impairment in Patients with Pseudotumor Cerebri Syndrome. Behavioural Neurology, 2011, 24, 143-148.	2.1	36
63	The roles of occipitotemporal cortex in reading, spelling, and naming. Cognitive Neuropsychology, 2014, 31, 511-528.	1.1	36
64	Brain regions essential for word comprehension: Drawing inferences from patients. Annals of Neurology, 2017, 81, 759-768.	5.3	35
65	Impaired Recognition of Emotional Faces after Stroke Involving Right Amygdala or Insula. Seminars in Speech and Language, 2018, 39, 087-100.	0.8	35
66	The role of representations in cognitive theory: More on multiple semantics and the agnosias. Cognitive Neuropsychology, 1993, 10, 235-249.	1.1	34
67	Content-based image retrieval for brain MRI: An image-searching engine and population-based analysis to utilize past clinical data for future diagnosis. NeuroImage: Clinical, 2015, 7, 367-376.	2.7	34
68	Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study. Magnetic Resonance Imaging, 2019, 59, 46-52.	1.8	34
69	Magnetic resonance perfusion imaging in the study of language. Brain and Language, 2007, 102, 165-175.	1.6	33
70	Cerebellar neuromodulation improves naming in post-stroke aphasia. Brain Communications, 2020, 2, fcaa179.	3.3	33
71	Neglect Performance in Acute Stroke Is Related to Severity of White Matter Hyperintensities. Cerebrovascular Diseases, 2014, 37, 223-230.	1.7	32
72	Types of naming errors in chronic post-stroke aphasia are dissociated by dual stream axonal loss. Scientific Reports, 2018, 8, 14352.	3.3	32

#	Article	IF	CITATIONS
73	Leukoaraiosis is independently associated with naming outcome in poststroke aphasia. Neurology, 2018, 91, e526-e532.	1.1	32
74	The Contribution of Neuroimaging to the Study of Language and Aphasia. Neuropsychology Review, 2006, 16, 171-183.	4.9	31
75	Aphasia or Neglect after Thalamic Stroke: The Various Ways They may be Related to Cortical Hypoperfusion. Frontiers in Neurology, 2014, 5, 231.	2.4	31
76	Patterns of decline in naming and semantic knowledge in primary progressive aphasia. Aphasiology, 2018, 32, 1010-1030.	2.2	31
77	Advances and Innovations in Aphasia Treatment Trials. Stroke, 2019, 50, 2977-2984.	2.0	31
78	Brain volumes as predictors of tDCS effects in primary progressive aphasia. Brain and Language, 2020, 200, 104707.	1.6	31
79	Reperfusion of specific cortical areas is associated with improvement in distinct forms of hemispatial neglect. Cortex, 2012, 48, 530-539.	2.4	30
80	The association of insular stroke with lesion volume. NeuroImage: Clinical, 2016, 11, 41-45.	2.7	30
81	Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 47-57.	1.9	29
82	Machine <scp>learningâ€based</scp> multimodal prediction of language outcomes in chronic aphasia. Human Brain Mapping, 2021, 42, 1682-1698.	3.6	29
83	Voxelwise Bayesian lesion-deficit analysis. NeuroImage, 2008, 40, 1633-1642.	4.2	28
84	Imaging network level language recovery after left PCA stroke. Restorative Neurology and Neuroscience, 2016, 34, 473-489.	0.7	28
85	Partially overlapping sensorimotor networks underlie speech praxis and verbal short-term memory: evidence from apraxia of speech following acute stroke. Frontiers in Human Neuroscience, 2014, 8, 649.	2.0	27
86	Right hemisphere ventral stream for emotional prosody identification. Neurology, 2020, 94, e1013-e1020.	1.1	27
87	The right place at the right time?. Brain, 2006, 129, 1351-1356.	7.6	26
88	Role for memory capacity in sentence comprehension: Evidence from acute stroke. Aphasiology, 2014, 28, 1258-1280.	2.2	26
89	Diffusionââ,¬â€œPerfusion Mismatch: An Opportunity for Improvement in Cortical Function. Frontiers in Neurology, 2014, 5, 280.	2.4	26
90	Right Hemispheric Homologous Language Pathways Negatively Predicts Poststroke Naming Recovery. Stroke, 2020, 51, 1002-1005.	2.0	26

#	Article	IF	CITATIONS
91	Neurologic aspects of traumatic brain injury. International Review of Psychiatry, 2003, 15, 302-309.	2.8	25
92	Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiology of Aging, 2019, 76, 214.e1-214.e9.	3.1	25
93	Developing, Implementing, and Improving Assessment and Treatment Fidelity in Clinical Aphasia Research. American Journal of Speech-Language Pathology, 2020, 29, 286-298.	1.8	25
94	Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke. Communications Medicine, 2021, 1, .	4.2	24
95	Testing Conclusions From Functional Imaging of Working Memory with Data From Acute Stroke. Behavioural Neurology, 2007, 18, 37-43.	2.1	23
96	Patterns of Dysgraphia in Primary Progressive Aphasia Compared to Post-Stroke Aphasia. Behavioural Neurology, 2013, 26, 21-34.	2.1	23
97	Pharmacological, Surgical, and Neurovascular Interventions to Augment Acute Aphasia Recovery. American Journal of Physical Medicine and Rehabilitation, 2007, 86, 426-434.	1.4	22
98	Anosognosia for hemiplegia: The contributory role of right inferior frontal gyrus Neuropsychology, 2015, 29, 421-432.	1.3	22
99	Selective impairments in components of affective prosody in neurologically impaired individuals. Brain and Cognition, 2018, 124, 29-36.	1.8	22
100	Cognitive and language performance predicts effects of spelling intervention and tDCS in Primary Progressive Aphasia. Cortex, 2020, 124, 66-84.	2.4	22
101	White Matter Integrity Predicts Electrical Stimulation (tDCS) and Language Therapy Effects in Primary Progressive Aphasia. Neurorehabilitation and Neural Repair, 2021, 35, 44-57.	2.9	22
102	Compendium of cerebrovascular diseases. International Review of Psychiatry, 2006, 18, 395-407.	2.8	21
103	Distinctions between the dementia in Amyotrophic Lateral Sclerosis with Frontotemporal Dementia and the dementia of Alzheimer's disease. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2007, 8, 276-282.	2.1	21
104	Longitudinal imaging and deterioration in word comprehension in primary progressive aphasia: Potential clinical significance. Aphasiology, 2014, 28, 948-963.	2.2	21
105	Brain Damage Associated with Impaired Sentence Processing in Acute Aphasia. Journal of Cognitive Neuroscience, 2020, 32, 256-271.	2.3	20
106	Neural regions underlying object and action naming: complementary evidence from acute stroke and primary progressive aphasia. Aphasiology, 2022, 36, 732-760.	2.2	20
107	Pre-stroke employment results in better patient-reported outcomes after minor stroke. Clinical Neurology and Neurosurgery, 2018, 165, 38-42.	1.4	19
108	Rehabilitation of Unilateral Spatial Neglect: New Insights From Magnetic Resonance Perfusion Imaging. Archives of Physical Medicine and Rehabilitation, 2006, 87, 43-49.	0.9	18

#	Article	IF	CITATIONS
109	Describing Phonological Paraphasias in Three Variants of Primary Progressive Aphasia. American Journal of Speech-Language Pathology, 2018, 27, 336-349.	1.8	18
110	The NIHSS-Plus: Improving Cognitive Assessment with the NIHSS. Behavioural Neurology, 2010, 22, 11-15.	2.1	17
111	Differences in linguistic cohesion within the first year following right- and left-hemisphere lesions. Aphasiology, 2021, 35, 357-371.	2.2	17
112	White matter tracts critical for recognition of sarcasm. Neurocase, 2016, 22, 22-29.	0.6	16
113	The relationship between baseline volume in temporal areas and post-treatment naming accuracy in primary progressive aphasia. Aphasiology, 2017, 31, 1059-1077.	2.2	16
114	Neural Correlates of Letter and Semantic Fluency in Primary Progressive Aphasia. Brain Sciences, 2022, 12, 1.	2.3	16
115	The â€~Standard' for Poststroke Aphasia Recovery. Stroke, 2010, 41, 1316-1317.	2.0	15
116	Acute Ischemic Lesions Associated With Impairments in Expression and Recognition of Affective Prosody. Perspectives of the ASHA Special Interest Groups, 2016, 1, 82-95.	0.8	15
117	HLA antigens and HBV infection: evaluation in the chronic carrier state and in a large family. Tissue Antigens, 1981, 18, 247-251.	1.0	14
118	The neglected role of the right hemisphere in spatial representation of words for reading. Aphasiology, 2005, 19, 225-238.	2.2	14
119	Frequency of Hematoma Expansion After Spontaneous Intracerebral Hemorrhage in Children. JAMA Neurology, 2014, 71, 165.	9.0	14
120	Editorial: The Ischemic Penumbra: Still the Target for Stroke Therapies?. Frontiers in Neurology, 2015, 6, 85.	2.4	14
121	The eyes reveal uncertainty about object distinctions in semantic variant primary progressive aphasia. Cortex, 2018, 103, 372-381.	2.4	14
122	Disruptions of the Human Connectome Associated With Hemispatial Neglect. Neurology, 2022, 98, e107-e114.	1.1	14
123	Predicting Symptomatic Intracerebral Hemorrhage Versus Lacunar Disease in Patients With Longstanding Hypertension. Stroke, 2014, 45, 1679-1683.	2.0	13
124	Longitudinal imaging of reading and naming recovery after stroke. Aphasiology, 2018, 32, 839-854.	2.2	13
125	Automatic Subtyping of Individuals with Primary Progressive Aphasia. Journal of Alzheimer's Disease, 2021, 79, 1185-1194.	2.6	13
126	Aphasia and right hemisphere syndromes in stroke. Current Neurology and Neuroscience Reports, 2005, 5, 458-464.	4.2	12

#	Article	IF	CITATIONS
127	Gender differences in unilateral spatial neglect within 24 hours of ischemic stroke. Brain and Cognition, 2008, 68, 49-52.	1.8	12
128	Neural structures supporting spontaneous and assisted (entrained) speech fluency. Brain, 2019, 142, 3951-3962.	7.6	12
129	Naming errors and dysfunctional tissue metrics predict language recovery after acute left hemisphere stroke. Neuropsychologia, 2020, 148, 107651.	1.6	12
130	The role of microstructural integrity of major language pathways in narrative speech in the first year after stroke. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105078.	1.6	12
131	Treatment of post-stroke aphasia: A narrative review for stroke neurologists. International Journal of Stroke, 2021, 16, 1002-1008.	5.9	12
132	Thalamic Nuclei and Thalamocortical Pathways After Left Hemispheric Stroke and Their Association with Picture Naming. Brain Connectivity, 2021, 11, 553-565.	1.7	12
133	The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain, 2022, 145, 3916-3930.	7.6	12
134	Neuroanatomical structures supporting lexical diversity, sophistication, and phonological word features during discourse. Neurolmage: Clinical, 2019, 24, 101961.	2.7	11
135	MR fingerprinting ASL: Sequence characterization and comparison with dynamic susceptibility contrast (DSC) MRI. NMR in Biomedicine, 2020, 33, e4202.	2.8	11
136	Differentiating between subtypes of primary progressive aphasia and mild cognitive impairment on a modified version of the Frontal Behavioral Inventory. PLoS ONE, 2017, 12, e0183212.	2.5	10
137	Pilot study of volume contracted state and hospital outcome after stroke. Neurology: Clinical Practice, 2018, 8, 21-26.	1.6	10
138	Visuomotor figure construction and visual figure delayed recall and recognition in primary progressive aphasia. Aphasiology, 2020, 34, 1456-1470.	2.2	10
139	Developments in treating the nonmotor symptoms of stroke. Expert Review of Neurotherapeutics, 2020, 20, 567-576.	2.8	10
140	Application of the dual stream model to neurodegenerative disease: evidence from a multivariate classification tool in primary progressive aphasia. Aphasiology, 2022, 36, 618-647.	2.2	10
141	A Framework for Interpreting Distinct Patterns of Hemispatial Neglect. Neurocase, 1995, 1, 189-208.	0.6	10
142	Task performance to discriminate among variants of primary progressive aphasia. Cortex, 2021, 145, 201-211.	2.4	10
143	Chapter 15 Cognitive processes underlying reading and writing and their neural substrates. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 88, 311-322.	1.8	9
144	Characterizing subtypes and neural correlates of receptive aprosodia in acute right hemisphere stroke. Cortex, 2021, 141, 36-54.	2.4	9

#	Article	IF	CITATIONS
145	Lesion loci of impaired affective prosody: A systematic review of evidence from stroke. Brain and Cognition, 2021, 152, 105759.	1.8	9
146	Right hemisphere dysfunction is better predicted by emotional prosody impairments as compared to neglect. , 2014, 2, 1037.		9
147	Operationalising treatment success in aphasia rehabilitation. Aphasiology, 2023, 37, 1693-1732.	2.2	9
148	Systemic blood pressure and stroke outcome and recurrence. Current Atherosclerosis Reports, 2004, 6, 274-280.	4.8	8
149	Recovery of orthographic processing after stroke: AÂlongitudinal fMRI study. Cortex, 2017, 92, 103-118.	2.4	8
150	Distinguishing logopenic from semantic & nonfluent variant primary progressive aphasia: Patterns of linguistic and behavioral correlations. Neurocase, 2019, 25, 98-105.	0.6	8
151	Various tests of left neglect are associated with distinct territories of hypoperfusion in acute stroke. Brain Communications, 2022, 4, fcac064.	3.3	8
152	Brain/Language Relationships Identified with Diffusion and Perfusion MRI: Clinical Applications in Neurology and Neurosurgery. Annals of the New York Academy of Sciences, 2005, 1064, 149-161.	3.8	7
153	Neural Mechanisms of Swallowing Dysfunction and Apraxia of Speech in Acute Stroke. Dysphagia, 2018, 33, 610-615.	1.8	7
154	Neural processing critical for distinguishing between speech sounds. Brain and Language, 2019, 197, 104677.	1.6	7
155	Leukoaraiosis severity predicts rate of decline in primary progressive aphasia. Aphasiology, 2020, 34, 365-375.	2.2	7
156	Stroke Recurrence and Its Relationship With Language Abilities. Journal of Speech, Language, and Hearing Research, 2021, 64, 2022-2037.	1.6	7
157	Aphasia: Current Concepts in Theory and Practice. , 2014, 2, 1042.		7
158	Systemic blood pressure and stroke outcome and recurrence. Current Hypertension Reports, 2005, 7, 72-78.	3.5	6
159	The Future of Stroke Treatment. JAMA Neurology, 2014, 71, 1473.	9.0	6
160	Where are aphasia theory and management "headed�. F1000Research, 2017, 6, 1038.	1.6	6
161	Executive control deficits and lesion correlates in acute left hemisphere stroke survivors with and without aphasia. Brain Imaging and Behavior, 2022, 16, 868-877.	2.1	6
162	Simultaneous Hemodynamic and Structural Imaging of Ischemic Stroke With Magnetic Resonance Fingerprinting Arterial Spin Labeling. Stroke, 2022, 53, 2016-2025.	2.0	6

#	Article	IF	CITATIONS
163	Progress in Cognitive Neuroscience Research on Dysgraphia: Introduction. Neurocase, 2004, 10, 89-90.	0.6	5
164	The cart before the horse: When cognitive neuroscience precedes cognitive neuropsychology. Cognitive Neuropsychology, 2017, 34, 420-429.	1.1	5
165	Grammatical ability predicts relative action naming impairment in primary progressive aphasia. Aphasiology, 2020, 34, 664-674.	2.2	5
166	Influence of age, lesion volume, and damage to dorsal versus ventral streams to viewer- and stimulus-centered hemispatial neglect in acute right hemisphere stroke. Cortex, 2020, 126, 73-82.	2.4	5
167	One cat, two cats, red cat, blue cats: eliciting morphemes from individuals with primary progressive aphasia. Aphasiology, 2021, 35, 1611-1622.	2.2	5
168	For a theory of cognitive rehabilitation. , 2005, , 271-280.		5
169	Hyperintense vessels on imaging account for neurological function independent of lesion volume in acute ischemic stroke. NeuroImage: Clinical, 2022, 34, 102991.	2.7	5
170	Protocol for Escitalopram and Language Intervention for Subacute Aphasia (ELISA): A randomized, double blind, placebo-controlled trial. PLoS ONE, 2021, 16, e0261474.	2.5	5
171	Validating Age-Related Functional Imaging Changes in Verbal Working Memory with Acute Stroke. Behavioural Neurology, 2011, 24, 187-199.	2.1	4
172	Baseline MRI associates with later naming status in primary progressive aphasia. Brain and Language, 2020, 201, 104723.	1.6	4
173	A double dissociation between plural and possessive "s― Evidence from the Morphosyntactic Generation test. Cognitive Neuropsychology, 2021, 38, 116-123.	1.1	4
174	Independent contributions of structural and functional connectivity: Evidence from a stroke model. Network Neuroscience, 2021, 5, 911-928.	2.6	4
175	New Insights from a Not-So-Neglected Field: Hemispatial Neglect. Behavioural Neurology, 2013, 26, 109-110.	2.1	4
176	Deterioration or recovery of selective cognitive function can reveal the role of focal areas within networks of the brain. Behavioural Neurology, 2013, 26, 3-5.	2.1	4
177	A Comparison of Two Methods for MRI Classification of At-Risk Tissue and Core Infarction. Frontiers in Neurology, 2014, 5, 155.	2.4	3
178	Stroke of bad luck?. Neurocase, 2017, 23, 70-78.	0.6	3
179	Affective prosody in frontotemporal dementia. Neurology, 2017, 89, 644-645.	1.1	3
180	Editorial: Neuroimaging of Affective Empathy and Emotional Communication. Frontiers in Neurology, 2018, 9, 875.	2.4	3

#	Article	IF	CITATIONS
181	"The effect of tDCS on functional connectivity in primary progressive aphasia―NeuroImage: Clinical, volume 19 (2018), pages 703–715. NeuroImage: Clinical, 2019, 22, 101734.	2.7	3
182	Ethical and Practical Challenges of the Communication and Behavioral Manifestations of Primary Progressive Aphasia. Seminars in Speech and Language, 2020, 41, 249-256.	0.8	3
183	Explicit Training to Improve Affective Prosody Recognition in Adults with Acute Right Hemisphere Stroke. Brain Sciences, 2021, 11, 667.	2.3	3
184	Neural bases of elements of syntax during speech production in patients with aphasia. Brain and Language, 2021, 222, 105025.	1.6	3
185	Developing, monitoring, and reporting of fidelity in aphasia trials: core recommendations from the collaboration of aphasia trialists (CATs) trials for aphasia panel. Aphasiology, 2023, 37, 1733-1755.	2.2	3
186	Dissociable language and executive control deficits and recovery in post-stroke aphasia: An exploratory observational and case series study. Neuropsychologia, 2022, 172, 108270.	1.6	3
187	Arterial Spin Labeling technique and clinical applications of the intracranial compartment in stroke and stroke mimics - A case-based review. Neuroradiology Journal, 2022, 35, 437-453.	1.2	3
188	No evidence of impediment by three common classes of prescription drugs to post-stroke aphasia recovery in a retrospective longitudinal sample. PLoS ONE, 2022, 17, e0270135.	2.5	3
189	Deterioration or Recovery of Selective Cognitive Function Can Reveal the Role of Focal Areas within Networks of the Brain. Behavioural Neurology, 2013, 26, 3-5.	2.1	2
190	Regional Brain Dysfunction Associated with Semantic Errors in Comprehension. Seminars in Speech and Language, 2018, 39, 079-086.	0.8	2
191	New insights from a not-so-neglected field: hemispatial neglect. Behavioural Neurology, 2013, 26, 109-10.	2.1	2
192	The Impact of Mean Arterial Pressure and Volume Contraction in With Acute Ischemic Stroke. Frontiers in Neurology, 2022, 13, 766305.	2.4	2
193	Transcranial Direct Current Stimulation Paired With Verb Network Strengthening Treatment Improves Verb Naming in Primary Progressive Aphasia: A Case Series. American Journal of Speech-Language Pathology, 2022, 31, 1736-1754.	1.8	2
194	When words first fail: Predicting the emergence of primary progressive aphasia variants from unclassifiable anomic performance in early disease. Aphasiology, 2023, 37, 1173-1185.	2.2	2
195	Setting new tracks: not just creating another pretty picture. Brain, 2011, 134, 2798-2799.	7.6	1
196	Steam, broil, or bake: good recipes for language treatment studies. Aphasiology, 2015, 29, 563-566.	2.2	1
197	That's right! Language comprehension beyond the left hemisphere. Brain, 2018, 141, 3280-3289.	7.6	1
198	International Collaborations Are Essential for Stroke. Stroke, 2019, 50, 2993-2994.	2.0	1

#	Article	IF	CITATIONS
199	Progressive supranuclear palsy and pawpaw. Neurology: Clinical Practice, 2020, 10, e17-e18.	1.6	1
200	Is Aphasia Treatment Beneficial for the Elderly? A Review of Recent Evidence. Current Physical Medicine and Rehabilitation Reports, 2020, 8, 478-492.	0.8	1
201	Cardiac Structure and Function Is Associated With Hemispatial Neglect Severity. Frontiers in Neurology, 2021, 12, 666257.	2.4	1
202	Dysfunctional tissue correlates of unrelated naming errors in acute left hemisphere stroke. Language, Cognition and Neuroscience, 0, , 1-18.	1.2	1
203	Across diagnoses, naming errors reflect the location of damage. Neurology, 2020, 95, 897-898.	1.1	1
204	Written Discourse Task Helps to Identify Progression from Mild Cognitive Impairment to Dementia. Dementia and Geriatric Cognitive Disorders, 2021, 50, 446-453.	1.5	1
205	Neural correlates of syntactic comprehension: A longitudinal study. Brain and Language, 2022, 225, 105068.	1.6	1
206	Progressive Crossed Cerebellar Wallerian Degeneration After Hemispheric Infarct. Stroke, 2022, 53, STROKEAHA122038915.	2.0	1
207	Alexia and agraphia in acute and chronic stroke. , 2007, , 102-125.		0
208	Blood pressure control after stroke: too little, too late, or too soon to tell?. Lancet Neurology, The, 2014, 13, 1162-1163.	10.2	0
209	A rapidly progressive dementia case with pathological diagnosis of FTLD-UPS. Acta Neuropathologica, 2016, 132, 309-311.	7.7	0
210	Developmental and degenerative deficiencies in the language network. Neurology, 2020, 95, 281-282.	1.1	0
211	Abstract WP158: Supervised, Self Administered Tablet Based Cognitive Assessment in Neurodegenerative Disorders. Stroke, 2018, 49, .	2.0	0
212	Abstract W P42: Automated Perfusion Computer Axial Tomography Predicts Acute Stroke Deficits. Stroke, 2015, 46, .	2.0	0