Barbara Picconi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/488106/publications.pdf

Version: 2024-02-01

138 11,811 57 105
papers citations h-index g-index

139 139 139 11512 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia. Nature Neuroscience, 2003, 6, 501-506.	7.1	791
2	Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences, 2007, 30, 211-219.	4.2	707
3	Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neuroscience, 2014, 17, 1022-1030.	7.1	598
4	Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Progress in Neurobiology, 2015, 132, 96-168.	2.8	379
5	Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity. Journal of Neuroscience, 2000, 20, 8443-8451.	1.7	337
6	Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurology, The, 2010, 9, 1106-1117.	4.9	329
7	Dopaminergic control of synaptic plasticity in the dorsal striatum. European Journal of Neuroscience, 2001, 13, 1071-1077.	1.2	319
8	Experimental Parkinsonism Alters Endocannabinoid Degradation: Implications for Striatal Glutamatergic Transmission. Journal of Neuroscience, 2002, 22, 6900-6907.	1.7	303
9	Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience, 2001, 106, 579-587.	1.1	292
10	A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurology, The, 2006, 5, 974-983.	4.9	289
11	A model of I-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 2004, 16, 110-123.	2.1	282
12	A Critical Interaction between NR2B and MAGUK in L-DOPA Induced Dyskinesia. Journal of Neuroscience, 2006, 26, 2914-2922.	1.7	243
13	Levodopaâ€induced dyskinesia in Parkinson disease: Current and evolving concepts. Annals of Neurology, 2018, 84, 797-811.	2.8	225
14	Unilateral Dopamine Denervation Blocks Corticostriatal LTP. Journal of Neurophysiology, 1999, 82, 3575-3579.	0.9	214
15	Synaptic Dysfunction in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2012, 970, 553-572.	0.8	209
16	Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends in Pharmacological Sciences, 2008, 29, 402-412.	4.0	172
17	New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. Lancet Neurology, The, 2013, 12, 811-821.	4.9	165
18	Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition. Journal of Neuroscience, 2010, 30, 14182-14193.	1.7	155

#	Article	IF	CITATIONS
19	Inhibition of Mitochondrial Complex II Induces a Long-Term Potentiation of NMDA-Mediated Synaptic Excitation in the Striatum Requiring Endogenous Dopamine. Journal of Neuroscience, 2001, 21, 5110-5120.	1.7	152
20	Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. Journal of Neurochemistry, 2003, 85, 1018-1025.	2.1	145
21	The Distinct Role of Medium Spiny Neurons and Cholinergic Interneurons in the D ₂ /A _{2A} Receptor Interaction in the Striatum: Implications for Parkinson's Disease. Journal of Neuroscience, 2011, 31, 1850-1862.	1.7	140
22	Abnormal Ca2+-Calmodulin-Dependent Protein Kinase II Function Mediates Synaptic and Motor Deficits in Experimental Parkinsonism. Journal of Neuroscience, 2004, 24, 5283-5291.	1.7	136
23	Plasticity and repair in the post-ischemic brain. Neuropharmacology, 2008, 55, 353-362.	2.0	132
24	Early synaptic dysfunction in Parkinson's disease: Insights from animal models. Movement Disorders, 2016, 31, 802-813.	2.2	127
25	Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson's disease. Nature Communications, 2019, 10, 3945.	5.8	127
26	Decreased NR2B Subunit Synaptic Levels Cause Impaired Long-Term Potentiation But Not Long-Term Depression. Journal of Neuroscience, 2009, 29, 669-677.	1.7	126
27	Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134, 375-387.	3.7	125
28	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinsonâ \in [™] s disease. Brain, 2012, 135, 1884-1899.	3.7	124
29	Mitochondria and the Link Between Neuroinflammation and Neurodegeneration. Journal of Alzheimer's Disease, 2010, 20, S369-S379.	1.2	118
30	Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory. Behavioural Brain Research, 2009, 199, 108-118.	1.2	115
31	Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18985-18990.	3.3	113
32	l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiology of Disease, 2008, 29, 327-335.	2.1	105
33	Molecular mechanisms underlying levodopa-induced dyskinesia. Movement Disorders, 2008, 23, S570-S579.	2.2	99
34	Hyperkinetic disorders and loss of synaptic downscaling. Nature Neuroscience, 2016, 19, 868-875.	7.1	98
35	Synaptic dysfunction in Parkinson's disease. Biochemical Society Transactions, 2010, 38, 493-497.	1.6	96
36	Multiple Mechanisms Underlying the Neuroprotective Effects of Antiepileptic Drugs Against In Vitro Ischemia. Stroke, 2006, 37, 1319-1326.	1.0	95

#	Article	IF	CITATIONS
37	Dopamine-Dependent Long-Term Depression Is Expressed in Striatal Spiny Neurons of Both Direct and Indirect Pathways: Implications for Parkinson's Disease. Journal of Neuroscience, 2011, 31, 12513-12522.	1.7	94
38	Chronic Haloperidol Promotes Corticostriatal Long-Term Potentiation by Targeting Dopamine D2L Receptors. Journal of Neuroscience, 2004, 24, 8214-8222.	1.7	90
39	Motor complications in Parkinson's disease: Striatal molecular and electrophysiological mechanisms of dyskinesias. Movement Disorders, 2018, 33, 867-876.	2.2	82
40	Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain, 2019, 142, 1365-1385.	3.7	82
41	Pathological Synaptic Plasticity in the Striatum: Implications for Parkinson's Disease. NeuroToxicology, 2005, 26, 779-783.	1.4	80
42	Plastic and behavioral abnormalities in experimental Huntington's disease: A crucial role for cholinergic interneurons. Neurobiology of Disease, 2006, 22, 143-152.	2.1	79
43	Cocaine and Amphetamine Depress Striatal GABAergic Synaptic Transmission through D2 Dopamine Receptors. Neuropsychopharmacology, 2002, 26, 164-175.	2.8	78
44	Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain, 2004, 127, 1661-1669.	3.7	78
45	Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N -Methyl-D-Aspartate Receptor Subunit. Biological Psychiatry, 2016, 79, 402-414.	0.7	77
46	Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment. Brain, 2002, 125, 2635-2645.	3.7	76
47	A Synaptic Mechanism Underlying the Behavioral Abnormalities Induced by Manganese Intoxication. Neurobiology of Disease, 2001, 8, 419-432.	2.1	72
48	Is Pharmacological Neuroprotection Dependent on Reduced Glutamate Release?. Stroke, 2000, 31, 766-773.	1.0	71
49	Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140184.	1.8	71
50	Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: An immunohistological study. Purinergic Signalling, 2007, 3, 389-398.	1.1	69
51	Hippocampal Synaptic Plasticity, Memory, and Epilepsy: Effects of Long-Term Valproic Acid Treatment. Biological Psychiatry, 2010, 67, 567-574.	0.7	68
52	NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Frontiers in Cellular Neuroscience, 2015, 9, 245.	1.8	68
53	Rebalance of Striatal NMDA/AMPA Receptor Ratio Underlies the Reduced Emergence of Dyskinesia During D2-Like Dopamine Agonist Treatment in Experimental Parkinson's Disease. Journal of Neuroscience, 2012, 32, 17921-17931.	1.7	67
54	Derangement of Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Extracellular Signal-Regulated Kinase (ERK) Dependent Striatal Plasticity in L-DOPA-Induced Dyskinesia. Biological Psychiatry, 2015, 77, 106-115.	0.7	67

#	Article	IF	CITATIONS
55	NR2B Subunit Exerts a Critical Role in Postischemic Synaptic Plasticity. Stroke, 2006, 37, 1895-1901.	1.0	63
56	Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiology of Disease, 2007, 27, 44-53.	2.1	63
57	Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease. Brain, 2018, 141, 505-520.	3.7	62
58	Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiology of Aging, 2012, 33, 2138-2144.	1.5	60
59	Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons. Progress in Neurobiology, 2001, 63, 687-696.	2.8	59
60	Neuronal networks and synaptic plasticity in Parkinson's disease: beyond motor deficits. Parkinsonism and Related Disorders, 2007, 13, S259-S262.	1.1	55
61	Role of tonically-active neurons in the control of striatal function: Cellular mechanisms and behavioral correlates. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2001, 25, 211-230.	2.5	54
62	Subthalamic nucleus lesion reverses motor abnormalities and striatal glutamatergic overactivity in experimental parkinsonism. Neuroscience, 2005, 133, 831-840.	1.1	54
63	Electrophysiology and Pharmacology of Striatal Neuronal Dysfunction Induced by Mitochondrial Complex I Inhibition. Journal of Neuroscience, 2008, 28, 8040-8052.	1.7	54
64	Interaction of A2A adenosine and D2 dopamine receptors modulates corticostriatal glutamatergic transmission. Neuropharmacology, 2007, 53, 783-789.	2.0	53
65	Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiology of Disease, 2016, 86, 140-153.	2.1	53
66	Tissue plasminogen activator is required for corticostriatal long-term potentiation. European Journal of Neuroscience, 2002, 16, 713-721.	1.2	52
67	The Endocannabinoid System in Parkinsons Disease. Current Pharmaceutical Design, 2008, 14, 2337-2346.	0.9	52
68	Dopamine-dependent early synaptic and motor dysfunctions induced by \hat{l}_{\pm} -synuclein in the nigrostriatal circuit. Brain, 2021, 144, 3477-3491.	3.7	49
69	Protein phosphatase inhibitors induce modification of synapse structure and tau hyperphosphorylation in cultured rat hippocampal neurons., 1997, 48, 425-438.		48
70	Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Molecular and Cellular Neurosciences, 2004, 25, 9-20.	1.0	47
71	Experimental Parkinsonism Modulates Multiple Genes Involved in the Transduction of Dopaminergic Signals in the Striatum. Neurobiology of Disease, 2002, 10, 387-395.	2.1	43
72	Striatum–hippocampus balance: From physiological behavior to interneuronal pathology. Progress in Neurobiology, 2011, 94, 102-114.	2.8	43

#	Article	IF	CITATIONS
73	BDNF–TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nature Communications, 2013, 4, 2031.	5.8	40
74	Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiology of Disease, 2017, 108, 54-64.	2.1	40
75	Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson's disease. Amino Acids, 2007, 32, 189-195.	1.2	39
76	Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Experimental Neurology, 2011, 232, 240-250.	2.0	39
77	Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities. Journal of Neural Transmission, 2018, 125, 1263-1271.	1.4	39
78	N-Methyl-d-aspartate (NMDA) Receptor Composition Modulates Dendritic Spine Morphology in Striatal Medium Spiny Neurons. Journal of Biological Chemistry, 2012, 287, 18103-18114.	1.6	38
79	Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion. Scientific Reports, 2015, 5, 10933.	1.6	38
80	Intermittent thetaâ€burst stimulation rescues dopamineâ€dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: Possible role of glial activity. Movement Disorders, 2017, 32, 1035-1046.	2.2	38
81	Alpha-Synuclein as a Prominent Actor in the Inflammatory Synaptopathy of Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 6517.	1.8	38
82	Mechanisms underlying altered striatal synaptic plasticity in old A53T- \hat{l}_{\pm} synuclein overexpressing mice. Neurobiology of Aging, 2012, 33, 1792-1799.	1.5	37
83	New synaptic and molecular targets for neuroprotection in Parkinson's disease. Movement Disorders, 2013, 28, 51-60.	2.2	34
84	Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Frontiers in Neuroscience, 2019, 13, 288.	1.4	34
85	Memantine reduces neuronal dysfunctions triggered by in vitro ischemia and 3-nitropropionic acid. Experimental Neurology, 2007, 207, 218-226.	2.0	32
86	TrkB/BDNF-Dependent Striatal Plasticity and Behavior in a Genetic Model of Epilepsy: Modulation by Valproic Acid. Neuropsychopharmacology, 2010, 35, 1531-1540.	2.8	32
87	Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: From experimental models to neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 151-161.	1.8	31
88	Plastic abnormalities in experimental Huntington's disease. Current Opinion in Pharmacology, 2007, 7, 106-111.	1.7	30
89	Impaired Plasticity at Specific Subset of Striatal Synapses in the Ts65Dn Mouse Model of Down Syndrome. Biological Psychiatry, 2010, 67, 666-671.	0.7	28
90	Electrophysiological actions of zonisamide on striatal neurons: Selective neuroprotection against complex I mitochondrial dysfunction. Experimental Neurology, 2010, 221, 217-224.	2.0	28

#	Article	IF	Citations
91	NR2B-containing NMDA receptors promote the neurotoxic effects of 3-nitropropionic acid but not of rotenone in the striatum. Experimental Neurology, 2006, 202, 470-479.	2.0	27
92	Acetyl-l-carnitine protects striatal neurons against in vitro ischemia: The role of endogenous acetylcholine. Neuropharmacology, 2006, 50, 917-923.	2.0	27
93	Epilepsyâ€induced abnormal striatal plasticity in Bassoon mutant mice. European Journal of Neuroscience, 2009, 29, 1979-1993.	1.2	26
94	Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4375-84.	3.3	26
95	From cell lines to pluripotent stem cells for modelling Parkinson's Disease. Journal of Neuroscience Methods, 2020, 340, 108741.	1.3	26
96	Acetyl-l-Carnitine selectively prevents post-ischemic LTP via a possible action on mitochondrial energy metabolism. Neuropharmacology, 2008, 55, 223-229.	2.0	25
97	Environmental enrichment restores CA1 hippocampal LTP and reduces severity of seizures in epileptic mice. Experimental Neurology, 2014, 261, 320-327.	2.0	25
98	NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiology of Disease, 2019, 121, 338-349.	2.1	24
99	mTOR inhibitor rapamycin suppresses striatal post-ischemic LTP. Experimental Neurology, 2010, 226, 328-331.	2.0	23
100	Theta-burst stimulation and striatal plasticity in experimental parkinsonism. Experimental Neurology, 2012, 236, 395-398.	2.0	23
101	Pathways of neurodegeneration and experimental models of basal ganglia disorders: Downstream effects of mitochondrial inhibition. European Journal of Pharmacology, 2006, 545, 65-72.	1.7	22
102	A2A adenosine receptor antagonists protect the striatum against rotenone-induced neurotoxicity. Experimental Neurology, 2009, 217, 231-234.	2.0	19
103	Lamotrigine and remacemide protect striatal neurons against in vitro ischemia: an electrophysiological study. Experimental Neurology, 2003, 182, 461-469.	2.0	18
104	l-DOPA treatment of parkinsonian rats changes the expression of Src, Lyn and PKC kinases. Neuroscience Letters, 2006, 398, 211-214.	1.0	18
105	A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation. PLoS ONE, 2012, 7, e38312.	1.1	18
106	Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism and Related Disorders, 2016, 22, S65-S68.	1.1	18
107	Rapamycin, by Inhibiting mTORC1 Signaling, Prevents the Loss of Striatal Bidirectional Synaptic Plasticity in a Rat Model of L-DOPA-Induced Dyskinesia. Frontiers in Aging Neuroscience, 2020, 12, 230.	1.7	18
108	Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience, 2012, 211, 165-184.	1.1	17

#	Article	IF	Citations
109	Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression. Neuropharmacology, 2016, 101, 341-350.	2.0	16
110	Deficits of glutamate transmission in the striatum of toxic and genetic models of Huntington's disease. Neuroscience Letters, 2006, 410, 6-10.	1.0	15
111	Corticostriatal Plastic Changes in Experimental L-DOPA-Induced Dyskinesia. Parkinson's Disease, 2012, 2012, 1-10.	0.6	15
112	An abnormal striatal synaptic plasticity may account for the selective neuronal vulnerability in Huntington's disease. Neurological Sciences, 2001, 22, 61-62.	0.9	14
113	Striatal synaptic changes in experimental parkinsonism: Role of NMDA receptor trafficking in PSD. Parkinsonism and Related Disorders, 2008, 14, S145-S149.	1.1	14
114	Targeting metabotropic glutamate receptors as a new strategy against levodopaâ€induced dyskinesia in Parkinson's disease?. Movement Disorders, 2014, 29, 715-719.	2.2	14
115	Ischemic-LTP in Striatal Spiny Neurons of both Direct and Indirect Pathway Requires the Activation of D1-Like Receptors and NO/Soluble Guanylate Cyclase/cGMP Transmission. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 278-286.	2.4	13
116	Na + /Ca 2+ Exchanger Maintains Ionic Homeostasis in the Peri-Infarct Area. Stroke, 2007, 38, 1614-1620.	1.0	11
117	Dopamine drives bingeâ€like consumption of a palatable food in experimental Parkinsonism. Movement Disorders, 2019, 34, 821-831.	2.2	11
118	Lâ€3,4â€dihydroxyphenylalanineâ€induced sprouting of serotonin axon terminals: A useful biomarker for dyskinesias?. Annals of Neurology, 2010, 68, 578-580.	2.8	10
119	Corticostriatal synaptic plasticity alterations in the R6/1 transgenic mouse model of Huntington's disease. Journal of Neuroscience Research, 2019, 97, 1655-1664.	1.3	10
120	Transcranial Magnetic Stimulation Exerts "Rejuvenation―Effects on Corticostriatal Synapses after Partial Dopamine Depletion. Movement Disorders, 2021, 36, 2254-2263.	2.2	10
121	l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via \hat{l}^2 -adrenergic receptors. Experimental Neurology, 2014, 261, 377-385.	2.0	9
122	Basic mechanisms of plasticity and learning. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 21-34.	1.0	9
123	Differential effect of FHM2 mutation on synaptic plasticity in distinct hippocampal regions. Cephalalgia, 2019, 39, 1333-1338.	1.8	8
124	Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology, 2020, 170, 108024.	2.0	8
125	CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors. Neurobiology of Disease, 2021, 158, 105473.	2.1	8
126	Effects of uremic toxins on hippocampal synaptic transmission: implication for neurodegeneration in chronic kidney disease. Cell Death Discovery, 2021, 7, 295.	2.0	8

#	Article	IF	CITATIONS
127	Deficits of glutamate transmission in the striatum of experimental hemiballism. Neuroscience, 2006, 143, 213-221.	1.1	7
128	Striatal spreading depolarization: Possible implication in levodopaâ€induced dyskineticâ€like behavior. Movement Disorders, 2019, 34, 832-844.	2.2	6
129	Dopamine denervation induces neurotensin immunoreactivity in GABA-parvalbumin striatal neurons. Synapse, 2001, 41, 360-362.	0.6	5
130	Direct and indirect pathways in levodopaâ€induced dyskinesia: A more complex matter than a network imbalance. Movement Disorders, 2010, 25, 1527-1529.	2.2	5
131	Switching on the lights of dyskinesia: Perspectives and limits of the optogenetic approaches. Movement Disorders, 2017, 32, 485-486.	2.2	5
132	Prenatal stress and hippocampal BDNF expression: a fading imperative. Journal of Physiology, 2012, 590, 1309-1310.	1.3	4
133	Rhes-mTORC1 interaction: A new possible therapeutic target in Parkinson's disease and L-dopa-induced dyskinesia?. Movement Disorders, 2012, 27, 815-815.	2.2	3
134	Maternal stress programs accelerated aging of the basal ganglia motor system in offspring. Neurobiology of Stress, 2020, 13, 100265.	1.9	3
135	Serotonin drives striatal synaptic plasticity in a sex-related manner. Neurobiology of Disease, 2021, 158, 105448.	2.1	3
136	Long-Term Shaping of Corticostriatal Synaptic Activity by Acute Fasting. International Journal of Molecular Sciences, 2021, 22, 1916.	1.8	2
137	Glutamate Receptors and Levodopa-Induced Dyskinesia. , 2014, , 229-243.		2
138	Progress of clinical neuroscience in movement disorders: Technical and methodological developments. Journal of Neuroscience Methods, 2021, 349, 109034.	1.3	O