
Lennart Weltje

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquatic Toxicology, 2003, 64, 437-449.	1.9	133
2	Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands. Science of the Total Environment, 2002, 286, 191-214.	3.9	117
3	Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptive response. Human and Experimental Toxicology, 2005, 24, 431-437.	1.1	100
4	A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Critical Reviews in Toxicology, 2018, 48, 195-216.	1.9	100
5	COMPARATIVE ACUTE AND CHRONIC SENSITIVITY OF FISH AND AMPHIBIANS: A CRITICAL REVIEW OF DATA. Environmental Toxicology and Chemistry, 2013, 32, 984-994.	2.2	83
6	Endocrine disruption in nematodes: effects and mechanisms. Ecotoxicology, 2007, 16, 15-28.	1.1	72
7	Genotoxic damage in field-collected three-spined sticklebacks (Gasterosteus aculeatus L.): A suitable biomonitoring tool?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 628, 19-30.	0.9	66
8	Chironomids: suitable test organisms for risk assessment investigations on the potential endocrine disrupting properties of pesticides. Ecotoxicology, 2007, 16, 221-230.	1.1	62
9	Development and validation of an OECD reproductive toxicity test guideline with the pond snail Lymnaea stagnalis (Mollusca, Gastropoda). Regulatory Toxicology and Pharmacology, 2014, 70, 605-614.	1.3	49
10	The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach. Regulatory Toxicology and Pharmacology, 2016, 80, 241-246.	1.3	47
11	Development of an embryo toxicity test with the pond snail Lymnaea stagnalis using the model substance tributyltin and common solvents. Science of the Total Environment, 2012, 435-436, 90-95.	3.9	44
12	Test concentration setting for fish in vivo endocrine screening assays. Chemosphere, 2013, 92, 1067-1076.	4.2	41
13	Lutetium Speciation and Toxicity in a Microbial Bioassay: Testing the Free-Ion Model for Lanthanides. Environmental Science & Technology, 2004, 38, 6597-6604.	4.6	40
14	Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances. Integrated Environmental Assessment and Management, 2017, 13, 267-279.	1.6	38
15	Science based guidance for the assessment of endocrine disrupting properties of chemicals. Regulatory Toxicology and Pharmacology, 2011, 59, 37-46.	1.3	37
16	Risk assessment of endocrine active chemicals: Identifying chemicals of regulatory concern. Regulatory Toxicology and Pharmacology, 2012, 64, 143-154.	1.3	34
17	Adsorption of metals to membrane filters in view of their speciation in nutrient solution. Environmental Toxicology and Chemistry, 2003, 22, 265-271.	2.2	29
18	Aquatic toxicity tests with substances that are poorly soluble in water and consequences for environmental risk assessment. Environmental Toxicology and Chemistry, 2012, 31, 1662-1669.	2.2	29

LENNART WELTJE

#	Article	IF	CITATIONS
19	What Makes a Concentration Environmentally Relevant? Critique and a Proposal. Environmental Science & Technology, 2017, 51, 11520-11521.	4.6	29
20	A review of the effects of azole compounds in fish and their possible involvement in masculinization of wild fish populations. Critical Reviews in Toxicology, 2015, 45, 453-467.	1.9	28
21	Critical Review of Readâ€Across Potential in Testing for Endocrineâ€Related Effects in Vertebrate Ecological Receptors. Environmental Toxicology and Chemistry, 2020, 39, 739-753.	2.2	23
22	Uncertainties in biological responses that influence hazard and risk approaches to the regulation of endocrine active substances. Integrated Environmental Assessment and Management, 2017, 13, 293-301.	1.6	22
23	Weight of evidence approaches for the identification of endocrine disrupting properties of chemicals: Review and recommendations for EU regulatory application. Regulatory Toxicology and Pharmacology, 2017, 91, 20-28.	1.3	21
24	Reducing the number of fish in bioconcentration studies with general chemicals by reducing the number of test concentrations. Regulatory Toxicology and Pharmacology, 2014, 70, 442-445.	1.3	20
25	Optimizing the design of a reproduction toxicity test with the pond snail Lymnaea stagnalis. Regulatory Toxicology and Pharmacology, 2016, 81, 47-56.	1.3	20
26	Does hepatotoxicity interfere with endocrine activity in zebrafish (Danio rerio)?. Chemosphere, 2020, 238, 124589.	4.2	18
27	The chironomid acute toxicity test: Development of a new test system. Integrated Environmental Assessment and Management, 2010, 6, 301-307.	1.6	17
28	Commentary: Assessing the endocrine disrupting effects of chemicals on invertebrates in the European Union. Environmental Sciences Europe, 2022, 34, .	2.6	16
29	The seven year itch—progress in research on endocrine disruption in aquatic invertebrates since 1999. Ecotoxicology, 2007, 16, 1-3.	1.1	15
30	Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals. Regulatory Toxicology and Pharmacology, 2016, 80, 335-341.	1.3	14
31	Assessing the population relevance of endocrineâ€disrupting effects for nontarget vertebrates exposed to plant protection products. Integrated Environmental Assessment and Management, 2019, 15, 278-291.	1.6	14
32	Chronic toxicity of fenoxycarb to the midge Chironomus riparius after exposure in sediments of different composition. Journal of Soils and Sediments, 2009, 9, 94-102.	1.5	13
33	Reducing the number of fish in bioconcentration studies for plant protection products by reducing the number of test concentrations. Chemosphere, 2013, 90, 1300-1304.	4.2	13
34	Endocrine Disruption: Current approaches for regulatory testing and assessment of plant protection products are fit for purpose. Toxicology Letters, 2018, 296, 10-22.	0.4	13
35	The Extended Amphibian Metamorphosis Assay: A Thyroid pecific and Less Animalâ€Intensive Alternative to the Larval Amphibian Growth and Development Assay. Environmental Toxicology and Chemistry, 2021, 40, 2135-2144.	2.2	13
36	Investigating endocrineâ€disrupting properties of chemicals in fish and amphibians: Opportunities to apply the 3Rs. Integrated Environmental Assessment and Management, 2022, 18, 442-458.	1.6	13

LENNART WELTJE

#	Article	IF	CITATIONS
37	Development and validation of an OECD reproductive toxicity test guideline with the mudsnail Potamopyrgus antipodarum (Mollusca, Gastropoda). Chemosphere, 2017, 181, 589-599.	4.2	12
38	Mind the gap: Concerns using endpoints from endocrine screening assays in risk assessment. Regulatory Toxicology and Pharmacology, 2014, 69, 289-295.	1.3	11
39	Refinement of the ECETOC approach to identify endocrine disrupting properties of chemicals in ecotoxicology. Toxicology Letters, 2013, 223, 291-294.	0.4	10
40	Validation of the OECD reproduction test guideline with the New Zealand mudsnail Potamopyrgus antipodarum using trenbolone and prochloraz. Ecotoxicology, 2017, 26, 370-382.	1.1	10
41	Integrating Evolutionary Genetics and Ecotoxicology: On the Correspondence Between Reaction Norms and Concentration–Response Curves. Ecotoxicology, 2003, 12, 523-528.	1.1	9
42	Interpretation of sexual secondary characteristics (SSCs) in regulatory testing for endocrine activity in fish. Chemosphere, 2020, 240, 124943.	4.2	9
43	<i>In Response</i> : Adverse outcome pathways—An industry perspective. Environmental Toxicology and Chemistry, 2015, 34, 1937-1938.	2.2	8
44	Risk assessment considerations for plant protection products and terrestrial life-stages of amphibians. Science of the Total Environment, 2018, 636, 500-511.	3.9	8
45	Temporal population dynamics of the phantom midge Chaoborus crystallinus and its influence on the zooplankton community. Hydrobiologia, 2016, 770, 273-287.	1.0	6
46	An interspecies correlation model to predict acute dermal toxicity of plant protection products to terrestrial life stages of amphibians using fish acute toxicity and bioconcentration data. Chemosphere, 2017, 189, 619-626.	4.2	6
47	Recommendations for Reducing the USE of Fish and Amphibians in Endocrineâ€Disruption Testing of Biocides and Plant Protection Products in Europe. Integrated Environmental Assessment and Management, 2019, 15, 659-662.	1.6	6
48	Developments on the Regulation of Endocrine Disrupting Substances in Europe – Hazard, Risk and the Need for a Scientific Approach. Outlooks on Pest Management, 2012, 23, 85-91.	0.1	5
49	No proof of synergy at environmentally realistic concentrations of prochloraz and esfenvalerate—A reaction on "Synergy in microcosms with environmentally realistic concentrations of prochloraz and esfenvalerate―by Bjergager et al. (Aquat. Toxicol. 101 (2011), 412–422). Aquatic Toxicology, 2013, 140-141. 466-468.	1.9	5
50	Is normalized hindlimb length measurement in assessment of thyroid disruption in the amphibian metamorphosis assay relevant?. Journal of Applied Toxicology, 2019, 39, 1164-1172.	1.4	5
51	(MIS)Use of the Adverse Outcome Pathway Concept for Assessing Endocrine Disruption in Nontarget Organisms. Integrated Environmental Assessment and Management, 2020, 16, 525-528.	1.6	5
52	Hormone data collection in support of endocrine disruption (ED) assessment for aquatic vertebrates: Pragmatic and animal welfare considerations. Environment International, 2021, 146, 106287.	4.8	5
53	Fipronil should not be categorized as a "systemic insecticide†a reply to Gibbons et al. (2015). Environmental Science and Pollution Research, 2015, 22, 17253-17254.	2.7	3

54 Water and Sediment EQS Derivation and Application. , 2009, , 47-103.

#	Article	IF	CITATIONS
55	Reducing the number of fish in regulatory bioconcentration testing: Identifying and overcoming the barriers to using the 1â€concentration approach. Integrated Environmental Assessment and Management, 2017, 13, 212-214.	1.6	1
56	16th SETAC GLB (Society of Environmental Toxicology and Chemistry German LanguageBranch) Annual meeting held under the main theme "EcoTOXICOlogy andEnvironmental CHEMISTRY: crossing borders― from 18th to 20th September2011 at Landau. Environmental Sciences Europe, 2012, 24, .	2.6	0
57	Response to "A comprehensive review on environmental toxicity of azole compounds to fish― Chemosphere, 2022, 291, 133023.	4.2	0