
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns. Chemical Engineering Journal, 2022, 427, 130879.	6.6	32
2	Self-powered finger motion-sensing structural color display enabled by block copolymer photonic crystal. Nano Energy, 2022, 92, 106688.	8.2	25
3	Stress Dissipation Encoded Silk Fibroin Electrode for the Athleteâ€Beneficial Silk Bioelectronics. Advanced Science, 2022, 9, e2105420.	5.6	11
4	Micro-textured silicone-based implant fabrication using electrospun fibers as a sacrificial template to suppress fibrous capsule formation. Materials Science and Engineering C, 2022, , 112687.	3.8	4
5	Feasible Digital Light Processing Three-Dimensional Printing of a Biodegradable Porous Polymer with a High Internal Phase Emulsion Structure. ACS Applied Polymer Materials, 2022, 4, 1570-1575.	2.0	5
6	Thermoresponsive fiber-based microwells capable of formation and retrieval of salivary gland stem cell spheroids for the regeneration of irradiation-damaged salivary glands. Journal of Tissue Engineering, 2022, 13, 204173142210856.	2.3	3
7	A Conceptual Study on Photodynamic Controlâ€Mediated Holographic Composites. Advanced Photonics Research, 2022, 3, .	1.7	1
8	Controlled Release of Epidermal Growth Factor from Furfuryl-Gelatin Hydrogel Using in Situ Visible Light-Induced Crosslinking and Its Effects on Fibroblasts Proliferation and Migration. Gels, 2022, 8, 214.	2.1	13
9	Topographical pattern for neuronal tissue engineering. Journal of Industrial and Engineering Chemistry, 2022, 114, 19-32.	2.9	3
10	The improved photosensitivity of photosensitive polyimides containing <i>oâ€</i> nitrobenzyl ether groups induced by the addition of photoacid generator. Journal of Polymer Science, 2021, 59, 340-352.	2.0	7
11	Enhanced photocatalytic activity of Ce-doped β-Ga2O3 nanofiber fabricated by electrospinning method. Journal of Materials Science: Materials in Electronics, 2021, 32, 3402-3414.	1.1	4
12	Preparation of Surface-Reinforced Superabsorbent Polymer Hydrogel Microspheres via Incorporation of In Situ Synthesized Silver Nanoparticles. Polymers, 2021, 13, 902.	2.0	6
13	Preparation of alginate hydrogel with human-derived adipose tissue to improve fat graft survival and adipogenesis. Journal of Industrial and Engineering Chemistry, 2021, 95, 148-155.	2.9	4
14	Natural bio-based monomers for biomedical applications: a review. Biomaterials Research, 2021, 25, 8.	3.2	57
15	Chitosan/Cellulose-Based Porous Nanofilm Delivering C-Phycocyanin: A Novel Platform for the Production of Cost-Effective Cultured Meat. ACS Applied Materials & Interfaces, 2021, 13, 32193-32204.	4.0	24
16	Effects of basic fibroblast growth factor combined with an injectable in situ crosslinked hyaluronic acid hydrogel for a dermal filler. Reactive and Functional Polymers, 2021, 164, 104933.	2.0	18
17	SERS-based biosensing platform using shape-coded hydrogel microparticles incorporating silver nanoparticles. Sensors and Actuators B: Chemical, 2021, 341, 129989.	4.0	12
18	Body-mediated energy loss conversion for personalized cell vitalization. Nano Energy, 2021, 87, 106209.	8.2	8

#	Article	IF	CITATIONS
19	Gelatin MAGIC powder as nutrient-delivering 3D spacer for growing cell sheets into cost-effective cultured meat. Biomaterials, 2021, 278, 121155.	5.7	30
20	Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells. Biosensors and Bioelectronics, 2021, 193, 113531.	5.3	13
21	Electrically Conductive Micropatterned Polyaniline-Poly(ethylene glycol) Composite Hydrogel. Materials, 2021, 14, 308.	1.3	10
22	Blue Light-Activated Riboflavin Phosphate Promotes Collagen Crosslinking to Modify the Properties of Connective Tissues. Materials, 2021, 14, 5788.	1.3	7
23	Electrospun Fibers for Corneal Regeneration. Current Ophthalmology Reports, 2021, 9, 146-157.	0.5	5
24	Highly sensitive updatable green hologram recording polymer with photoisomerizable azobenzene with highly birefringent acetylene as the side chain. Polymer Journal, 2021, 53, 539-547.	1.3	4
25	In vivo biocompatibility evaluation of in situ-forming polyethylene glycol-collagen hydrogels in corneal defects. Scientific Reports, 2021, 11, 23913.	1.6	12
26	Highly-sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. Journal of Industrial and Engineering Chemistry, 2020, 82, 341-348.	2.9	27
27	CD44-Mediated Methotrexate Delivery by Hyaluronan-Coated Nanoparticles Composed of a Branched Cell-Penetrating Peptide. ACS Biomaterials Science and Engineering, 2020, 6, 494-504.	2.6	13
28	Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. International Journal of Molecular Sciences, 2020, 21, 99.	1.8	69
29	Highly luminescent biocompatible CsPbBr ₃ @SiO ₂ core–shell nanoprobes for bioimaging and drug delivery. Journal of Materials Chemistry B, 2020, 8, 10337-10345.	2.9	59
30	Preocular sensor system for concurrent monitoring of glucose levels and dry eye syndrome using tear fluids. PLoS ONE, 2020, 15, e0239317.	1.1	9
31	Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells. Pharmaceutics, 2020, 12, 902.	2.0	23
32	A novel 3D indirect co-culture system based on a collagen hydrogel scaffold for enhancing the osteogenesis of stem cells. Journal of Materials Chemistry B, 2020, 8, 9481-9491.	2.9	22
33	Zwitterion-assisted transition metal dichalcogenide nanosheets for scalable and biocompatible inkjet printing. Nano Research, 2020, 13, 2726-2734.	5.8	15
34	Simultaneous effects of silver-decorated graphite nanoplatelets and anisotropic alignments on improving thermal conductivity of stretchable poly(vinyl alcohol) composite films. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106045.	3.8	11
35	Cardiovascular tissue regeneration system based on multiscale scaffolds comprising double-layered hydrogels and fibers. Scientific Reports, 2020, 10, 20321.	1.6	17
36	Preparation and characterization of superabsorbent polymers (SAPs) surface-crosslinked with polycations. Reactive and Functional Polymers, 2020, 157, 104774.	2.0	12

#	Article	IF	CITATIONS
37	Effect of Silica Size and Content on Superamphiphobic Properties of Silica-Fluoropolymer Core-Shell Coatings. Polymers, 2020, 12, 2864.	2.0	10
38	3D touchless multiorder reflection structural color sensing display. Science Advances, 2020, 6, eabb5769.	4.7	81
39	Scaffold-supported extracellular matrices preserved by magnesium hydroxide nanoparticles for renal tissue regeneration. Biomaterials Science, 2020, 8, 5427-5440.	2.6	11
40	Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval. Materials Science and Engineering C, 2020, 115, 111128.	3.8	12
41	Robust and superomniphobic core-shell SiO2@poly(1H,1H,2H,2H-heptadecafluorodecyl) Tj ETQq1 1 0.784314 r polymerization. Progress in Organic Coatings, 2020, 148, 105851.	gBT /Overl 1.9	ock 10 Tf 50 5
42	Culture of neural stem cells on conductive and microgrooved polymeric scaffolds fabricated via electrospun fiber-template lithography. Biomedical Materials (Bristol), 2020, 15, 045007.	1.7	18
43	Enhancement of antitumor effect of radiotherapy via combination with Au@SiO2 nanoparticles targeted to tumor-associated macrophages. Journal of Industrial and Engineering Chemistry, 2020, 84, 349-357.	2.9	6
44	Modulation of Foreign Body Reaction against PDMS Implant by Grafting Topographically Different Poly(acrylic acid) Micropatterns. Macromolecular Bioscience, 2019, 19, 1900206.	2.1	11
45	Fabrication of microgrooved scaffolds using near-field electrospinning-assisted lithography (NFEAL). Journal of Industrial and Engineering Chemistry, 2019, 80, 471-478.	2.9	7
46	Synergistic Effect of Porous Hydroxyapatite Scaffolds Combined with Bioactive Glass/Poly(lactic- <i>co</i> -glycolic acid) Composite Fibers Promotes Osteogenic Activity and Bioactivity. ACS Omega, 2019, 4, 2302-2310.	1.6	21
47	Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 201906931.	3.3	20
48	Biodegradable polymers for modern vaccine development. Journal of Industrial and Engineering Chemistry, 2019, 77, 12-24.	2.9	43
49	Augmented re-endothelialization and anti-inflammation of coronary drug-eluting stent by abluminal coating with magnesium hydroxide. Biomaterials Science, 2019, 7, 2499-2510.	2.6	25
50	Micropatterned fibrous scaffolds for biomedical application. Journal of Industrial and Engineering Chemistry, 2019, 80, 729-738.	2.9	10
51	Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Research and Therapy, 2019, 10, 51.	2.4	90
52	A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. ACS Applied Materials & Interfaces, 2019, 11, 47695-47706.	4.0	44
53	Highly sensitive metal-enhanced fluorescence biosensor prepared on electrospun fibers decorated with silica-coated silver nanoparticles. Sensors and Actuators B: Chemical, 2019, 284, 140-147.	4.0	45
54	A Fibrous Hybrid Patch Couples Cell-Derived Matrix and Poly(<scp>l</scp> -lactide- <i>co</i> -caprolactone) for Endothelial Cells Delivery and Skin Wound Repair. ACS Biomaterials Science and Engineering, 2019, 5, 900-910.	2.6	16

#	Article	IF	CITATIONS
55	Cancer Selective Turn-On Fluorescence Imaging Using a Biopolymeric Nanocarrier. Biomacromolecules, 2019, 20, 1068-1076.	2.6	4
56	Signal-amplifying nanoparticle/hydrogel hybrid microarray biosensor for metal-enhanced fluorescence detection of organophosphorus compounds. Biofabrication, 2018, 10, 035002.	3.7	17
57	Converting Waste Papers to Fluorescent Carbon Dots in the Recycling Process without Loss of Ionic Liquids and Bioimaging Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 4510-4515.	3.2	75
58	Effects of Organic Acids and a Fluoropolymer on the Conductivity and Transparency of Poly(3,4-ethylenedioxythiophene) Films. Macromolecular Research, 2018, 26, 410-417.	1.0	6
59	Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosensors and Bioelectronics, 2018, 111, 102-116.	5.3	316
60	Controlled Release of Growth Factors from Multilayered Fibrous Scaffold for Functional Recoveries in Crushed Sciatic Nerve. ACS Biomaterials Science and Engineering, 2018, 4, 576-586.	2.6	47
61	Multi-scale characterization of surface-crosslinked superabsorbent polymer hydrogel spheres. Polymer, 2018, 145, 174-183.	1.8	25
62	Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers, 2018, 10, 1078.	2.0	119
63	Organotypic 3D Culture in Nanoscaffold Microwells Supports Salivary Gland Stem-Cell-Based Organization. ACS Biomaterials Science and Engineering, 2018, 4, 4311-4320.	2.6	37
64	Anisotropy-Driven High Thermal Conductivity in Stretchable Poly(vinyl alcohol)/Hexagonal Boron Nitride Nanohybrid Films. ACS Applied Materials & Interfaces, 2018, 10, 34625-34633.	4.0	80
65	Direct measurement of crosslinked surface layer in superabsorbent poly(acrylic acid). Materials Letters, 2018, 228, 33-36.	1.3	10
66	Enhancement of conductivity and transparency for of poly(3,4-ethylenedioxythiophene) films using photo-acid generator as dopant. Polymer, 2018, 147, 30-37.	1.8	4
67	Promotion of Vascular Morphogenesis of Endothelial Cells Co-Cultured with Human Adipose-Derived Mesenchymal Stem Cells Using Polycaprolactone/Gelatin Nanofibrous Scaffolds. Nanomaterials, 2018, 8, 117.	1.9	38
68	Stem cell properties of human clonal salivary gland stem cells are enhanced by three-dimensional priming culture in nanofibrous microwells. Stem Cell Research and Therapy, 2018, 9, 74.	2.4	16
69	Dual surface modification of PDMS-based silicone implants to suppress capsular contracture. Acta Biomaterialia, 2018, 76, 56-70.	4.1	38
70	Polyurethane matrix incorporating PDMS-based self-healing microcapsules with enhanced mechanical and thermal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 173-180.	2.3	31
71	Tethering Growth Factors to Collagen Surfaces Using Copper-Free Click Chemistry: Surface Characterization and in Vitro Biological Response. ACS Applied Materials & Interfaces, 2017, 9, 23389-23399.	4.0	33
72	Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns. Biomaterials Research, 2017, 21, 1.	3.2	58

#	Article	IF	CITATIONS
73	Design of biomimetic cellular scaffolds for co-culture system and their application. Journal of Tissue Engineering, 2017, 8, 204173141772464.	2.3	69
74	Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting. Colloids and Surfaces B: Biointerfaces, 2017, 158, 287-294.	2.5	35
75	Cell Microarray Technologies for High-Throughput Cell-Based Biosensors. Sensors, 2017, 17, 1293.	2.1	37
76	Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiation Oncology Journal, 2016, 34, 230-238.	0.7	34
77	Modification of heat storage ability and adhesive properties of core/shell structured phase change material nanocapsules. Macromolecular Research, 2016, 24, 556-561.	1.0	8
78	Protein-Immobilized Hydrogel Microstructures for Optical Biosensing. , 2016, , 305-326.		0
79	Bi-compartmental 3D scaffolds for the co-culture of intervertebral disk cells and mesenchymal stem cells. Journal of Industrial and Engineering Chemistry, 2016, 38, 113-122.	2.9	14
80	Hydrogel-Framed Nanofiber Matrix Integrated with a Microfluidic Device for Fluorescence Detection of Matrix Metalloproteinases-9. Analytical Chemistry, 2016, 88, 6247-6253.	3.2	43
81	Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Acta Biomaterialia, 2016, 45, 121-132.	4.1	42
82	Highly conductive and hydrated PEG-based hydrogels for the potential application of a tissue engineering scaffold. Reactive and Functional Polymers, 2016, 109, 15-22.	2.0	48
83	Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy. Chemical Communications, 2016, 52, 1258-1261.	2.2	75
84	Preparation and characterization of octadecane/polyurea nanocapsuleâ€embedded poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
85	Multi ompartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angewandte Chemie - International Edition, 2015, 54, 11511-11515.	7.2	36
86	Direct electrochemistry of glucose oxidase immobilized on carbon nanotube for improving glucose sensing. International Journal of Hydrogen Energy, 2015, 40, 2199-2206.	3.8	56
87	Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method. Journal of Power Sources, 2015, 286, 197-203.	4.0	68
88	Ag@SiO ₂ -entrapped hydrogel microarray: a new platform for a metal-enhanced fluorescence-based protein assay. Analyst, The, 2015, 140, 3375-3383.	1.7	18
89	Microfluidic-based multiplex immunoassay system integrated with an array of QD-encoded microbeads. Sensors and Actuators B: Chemical, 2015, 209, 242-251.	4.0	38
90	Preparation of Fe3O4-Embedded Poly(styrene)/Poly(thiophene) Core/Shell Nanoparticles and Their Hydrogel Patterns for Sensor Applications. Materials, 2014, 7, 195-205.	1.3	13

#	Article	IF	CITATIONS
91	A three-dimensional co-culture of HepG2 spheroids and fibroblasts using double-layered fibrous scaffolds incorporated with hydrogel micropatterns. RSC Advances, 2014, 4, 61005-61011.	1.7	28
92	Metal-enhanced fluorescence using silver nanoparticles-embedded polyelectrolyte multilayer films for microarray-based immunoassays. Colloid and Polymer Science, 2014, 292, 1355-1364.	1.0	15
93	Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 450, 46-51.	2.3	122
94	Fabrication of Multifunctional Layer-by-Layer Nanocapsules toward the Design of Theragnostic Nanoplatform. Biomacromolecules, 2014, 15, 1382-1389.	2.6	42
95	Hydrogel Micropattern-Incorporated Fibrous Scaffolds Capable of Sequential Growth Factor Delivery for Enhanced Osteogenesis of hMSCs. ACS Applied Materials & Interfaces, 2014, 6, 9338-9348.	4.0	56
96	Synthesis and properties of phase change material-polypyrrole core-shell nanocapsules via Fe3+-oxidative miniemulsion polymerization. Macromolecular Research, 2013, 21, 298-301.	1.0	4
97	Application of cellular micropatterns to miniaturized cell-based biosensor. Biomedical Engineering Letters, 2013, 3, 117-130.	2.1	6
98	Mutiscale substrates based on hydrogel-incorporated silicon nanowires for protein patterning and microarray-based immunoassays. Biosensors and Bioelectronics, 2013, 45, 129-135.	5.3	38
99	Fabrication of Nanofiber Microarchitectures Localized within Hydrogel Microparticles and Their Application to Protein Delivery and Cell Encapsulation. Advanced Functional Materials, 2013, 23, 591-597.	7.8	51
100	Mesoporous TiO2 as a nanostructured substrate for cell culture and cell patterning. RSC Advances, 2013, 3, 23673.	1.7	8
101	Drug Delivery: Fabrication of Nanofiber Microarchitectures Localized within Hydrogel Microparticles and Their Application to Protein Delivery and Cell Encapsulation (Adv. Funct. Mater.) Tj ETQq1 1 0	.7 84 814 r	gBI /Overloo
102	Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot–enzyme conjugates. Biosensors and Bioelectronics, 2012, 31, 529-536.	5.3	49
103	Preparation of photolithographically patterned inverse opal hydrogel microstructures and its application to protein patterning. Biosensors and Bioelectronics, 2012, 35, 243-250.	5.3	26
104	Preparation of collagenâ€immobilized poly(ethylene glycol)/poly(2â€hydroxyethyl methacrylate) interpenetrating network hydrogels for potential application of artificial cornea. Journal of Applied Polymer Science, 2012, 123, 637-645.	1.3	27
105	Micropatterns of double-layered nanofiber scaffolds with dual functions of cell patterning and metabolite detection. Lab on A Chip, 2011, 11, 2849.	3.1	34
106	Fabrication of hydrogel-micropatterned nanofibers for highly sensitive microarray-based immunosensors having additional enzyme-based sensing capability. Journal of Materials Chemistry, 2011, 21, 4476.	6.7	45
107	Graft Copolymer-Templated Mesoporous TiO ₂ Films Micropatterned with Poly(ethylene) Tj ETQq1 1 & Interfaces, 2011, 3, 573-581.	0.784314 4.0	4 rgBT /Over 20
108	Efficiency improvement of dye-sensitized solar cells using graft copolymer-templated mesoporous TiO2films as an interfacial layer. Journal of Materials Chemistry, 2011, 21, 1772-1779.	6.7	51

#	Article	IF	CITATIONS
109	Preparation of silver nanoparticle-containing semi-interpenetrating network hydrogels composed of pluronic and poly(acrylamide) with antibacterial property. Journal of Industrial and Engineering Chemistry, 2011, 17, 293-297.	2.9	40
110	Photosensitizing Hollow Nanocapsules for Combination Cancer Therapy. Angewandte Chemie - International Edition, 2011, 50, 11968-11971.	7.2	79
111	Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates. Acta Biomaterialia, 2011, 7, 1281-1289.	4.1	36
112	Non-positional cell microarray prepared by shape-coded polymeric microboards: A new microarray format for multiplex and high throughput cell-based assays. Biomicrofluidics, 2011, 5, 32001-3200110.	1.2	7
113	Cell Microarrays Based on Hydrogel Microstructures for the Application to Cell-Based Biosensor. Methods in Molecular Biology, 2011, 671, 133-145.	0.4	2
114	Fabrication of poly(ethylene glycol)â€based hydrogels entrapping enzymeâ€immobilized silica nanoparticles. Polymers for Advanced Technologies, 2010, 21, 476-482.	1.6	17
115	Micropatterned Fibrous Scaffolds Fabricated Using Electrospinning and Hydrogel Lithography: New Platforms to Create Cellular Micropatterns. Sensors and Actuators B: Chemical, 2010, 148, 504-510.	4.0	20
116	Micropatterned assembly of silica nanoparticles for a protein microarray with enhanced detection sensitivity. Biomedical Microdevices, 2010, 12, 457-464.	1.4	10
117	Fabrication and characterization of optical biosensors using polymer hydrogel microparticles and enzyme–quantum dot conjugates. Sensors and Actuators B: Chemical, 2010, 150, 120-125.	4.0	21
118	Development of phenol detecting biosensor using PEG hydrogel microparticles. , 2010, , .		1
119	Fast cell immobilization by using non-immunological method for cell based biosensor. , 2010, , .		0
120	Poly(thiophene) Nanoparticles Prepared by Fe3+-Catalyzed Oxidative Polymerization: A Size-Dependent Effect on Photoluminescence Property. Macromolecules, 2010, 43, 2484-2489.	2.2	39
121	Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots. Analyst, The, 2010, 135, 2871.	1.7	51
122	Dendrimer porphyrin-terminated polyelectrolyte multilayer micropatterns for a protein microarray with enhanced sensitivity. Journal of Materials Chemistry, 2010, 20, 6531.	6.7	15
123	Cell-based biosensor system using micropatterned polymer nanofiber. , 2010, , .		2
124	Preparation of protein microarrays on nonâ€fouling and hydrated poly(ethylene glycol) hydrogel substrates using photochemical surface modification. Journal of Chemical Technology and Biotechnology, 2009, 84, 279-284.	1.6	18
125	Entrapment of enzyme-linked magnetic nanoparticles within poly(ethylene glycol) hydrogel microparticles prepared by photopatterning. Reactive and Functional Polymers, 2009, 69, 293-299.	2.0	25
126	Poly(ethylene glycol) hydrogel microparticles containing enzyme-fluorophore conjugates for the detection of organophosphorus compounds. Sensors and Actuators B: Chemical, 2009, 137, 209-214.	4.0	7

#	Article	lF	CITATIONS
127	Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay. Sensors and Actuators B: Chemical, 2009, 137, 305-312.	4.0	45
128	Control of cell adhesion on poly(ethylene glycol) hydrogel surfaces using photochemical modification and micropatterning techniques. Journal of Industrial and Engineering Chemistry, 2009, 15, 124-128.	2.9	11
129	Immobilization of enzymes within hydrogel microparticles to create optical biosensors for the detection of organophosphorus compounds. Current Applied Physics, 2009, 9, e225-e228.	1.1	12
130	Protein-conjugated, glucose-sensitive surface using fluorescent dendrimer porphyrin. Journal of Materials Chemistry, 2009, 19, 5643.	6.7	30
131	Suspension arrays of hydrogel microparticles prepared by photopatterning for multiplexed protein-based bioassays. Biomedical Microdevices, 2008, 10, 813-822.	1.4	41
132	Development of microfluidic devices incorporating non-spherical hydrogel microparticles for protein-based bioassay. Microfluidics and Nanofluidics, 2008, 5, 703-710.	1.0	34
133	Preparation of interpenetrating polymer network composed of poly(ethylene glycol) and poly(acrylamide) hydrogels as a support of enzyme immobilization. Polymers for Advanced Technologies, 2008, 19, 852-858.	1.6	27
134	Fabrication of macroporous hydrogel membranes using photolithography for enzyme immobilization. Journal of Chemical Technology and Biotechnology, 2008, 83, 252-259.	1.6	14
135	Preparation of micropatterned hydrogel substrate via surface graft polymerization combined with photolithography for biosensor application. Sensors and Actuators B: Chemical, 2008, 129, 841-849.	4.0	57
136	Micropatterning of proteins on the surface of three-dimensional poly(ethylene glycol) hydrogel microstructures. Analytica Chimica Acta, 2008, 609, 59-65.	2.6	45
137	Hepatocyte Viability and Protein Expression within Hydrogel Microstructures. Biotechnology Progress, 2008, 21, 926-932.	1.3	26
138	Use of hydrogel microstructures as templates for protein immobilization. Materials Research Society Symposia Proceedings, 2008, 1095, 80801.	0.1	0
139	Ultraviolet Photolithographic Development of Polyphosphazene Hydrogel Microstructures for Potential Use in Microarray Biosensors. Chemistry of Materials, 2006, 18, 609-613.	3.2	38
140	Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Analytical and Bioanalytical Chemistry, 2006, 385, 1389-1397.	1.9	69
141	Multi-phenotypic Cellular Arrays for Biosensing. , 2006, , 79-93.		1
142	Immobilization of multi-enzyme microreactors inside microfluidic devices. Sensors and Actuators B: Chemical, 2005, 106, 335-342.	4.0	89
143	A Novel Single-Step Fabrication Technique to Create Heterogeneous Poly(ethylene glycol) Hydrogel Microstructures Containing Multiple Phenotypes of Mammalian Cells. Langmuir, 2005, 21, 4168-4174.	1.6	24
144	Microfabricated protein-containing poly(ethylene glycol) hydrogel arrays for biosensing. Sensors and Actuators B: Chemical, 2004, 97, 290-297.	4.0	71

#	Article	IF	CITATIONS
145	Title is missing!. Biomedical Microdevices, 2003, 5, 11-19.	1.4	78
146	Molding of Hydrogel Microstructures to Create Multiphenotype Cell Microarrays. Analytical Chemistry, 2003, 75, 5783-5789.	3.2	129
147	Photoreaction Injection Molding of Biomaterial Microstructures. Langmuir, 2003, 19, 10310-10316.	1.6	32
148	Poly(ethylene glycol) Hydrogel Microstructures Encapsulating Living Cells. Langmuir, 2002, 18, 2459-2462.	1.6	226
149	Cells in Micropatterned Hydrogels: Applications in Biosensing. Materials Research Society Symposia Proceedings, 2002, 723, 551.	0.1	1
150	Fabrication of Poly(ethylene glycol) Hydrogel Microstructures Using Photolithography. Langmuir, 2001, 17, 5440-5447.	1.6	443
151	Dendrimer Porphyrin (Phthalocyanine). , 0, , 2350-2366.		1