David E Wentworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880791/publications.pdf

Version: 2024-02-01

53939 75989 7,355 124 47 78 citations h-index g-index papers 135 135 135 11115 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature, 2022, 602, 307-313.	13.7	79
2	SARS-CoV-2 spike D614G change enhances replication and transmission. Nature, 2021, 592, 122-127.	13.7	440
3	Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. Npj Vaccines, 2021, 6, 59.	2.9	9
4	Susceptibility of widely diverse influenza a viruses to PB2 polymerase inhibitor pimodivir. Antiviral Research, 2021, 188, 105035.	1.9	15
5	Susceptibility to SARS-CoV-2 of Cell Lines and Substrates Commonly Used to Diagnose and Isolate Influenza and Other Viruses. Emerging Infectious Diseases, 2021, 27, 1380-1392.	2.0	21
6	N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry. Scientific Reports, 2021, 11, 23561.	1.6	14
7	Spread of Antigenically Drifted Influenza A(H3N2) Viruses and Vaccine Effectiveness in the United States During the 2018–2019 Season. Journal of Infectious Diseases, 2020, 221, 8-15.	1.9	150
8	Detection of baloxavir resistant influenza A viruses using next generation sequencing and pyrosequencing methods. Antiviral Research, 2020, 182, 104906.	1.9	13
9	Detection and Characterization of Swine Origin Influenza A(H1N1) Pandemic 2009 Viruses in Humans following Zoonotic Transmission. Journal of Virology, 2020, 95, .	1.5	10
10	Human Monoclonal Antibody Derived from Transchromosomic Cattle Neutralizes Multiple H1 Clades of Influenza A Virus by Recognizing a Novel Conformational Epitope in the Hemagglutinin Head Domain. Journal of Virology, 2020, 94, .	1.5	6
11	Development of an RNA Strand-Specific Hybridization Assay To Differentiate Replicating versus Nonreplicating Influenza A Viruses. Journal of Clinical Microbiology, 2020, 58, .	1.8	2
12	Genetically and Antigenically Divergent Influenza A(H9N2) Viruses Exhibit Differential Replication and Transmission Phenotypes in Mammalian Models. Journal of Virology, 2020, 94, .	1.5	12
13	Amino Acid Substitutions in Positions 385 and 393 of the Hydrophobic Region of VP4 May Be Associated with Rotavirus Attenuation and Cell Culture Adaptation. Viruses, 2020, 12, 408.	1.5	6
14	Microbiome disturbance and resilience dynamics of the upper respiratory tract during influenza A virus infection. Nature Communications, 2020, 11 , 2537.	5.8	72
15	Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. ELife, 2020, 9, .	2.8	35
16	Reply to â€~Reconciling disparate estimates of viral genetic diversity during human influenza infections'. Nature Genetics, 2019, 51, 1301-1303.	9.4	3
17	Evaluation of A(H1N1)pdm09 LAIV vaccine candidates stability and replication efficiency in primary human nasal epithelial cells. Vaccine: X, 2019, 2, 100031.	0.9	10
18	Replicative Fitness of Seasonal Influenza A Viruses With Decreased Susceptibility to Baloxavir. Journal of Infectious Diseases, 2019, 221, 367-371.	1.9	27

#	Article	IF	Citations
19	Susceptibility of Influenza A, B, C, and D Viruses to Baloxavir1. Emerging Infectious Diseases, 2019, 25, 1969-1972.	2.0	53
20	Detection of highly pathogenic avian influenza A(H5N6) viruses in waterfowl in Bangladesh. Virology, 2019, 534, 36-44.	1.1	13
21	Comparison of nucleic acid extraction methods for next-generation sequencing of avian influenza A virus from ferret respiratory samples. Journal of Virological Methods, 2019, 270, 95-105.	1.0	3
22	Insights into the antigenic advancement of influenza A(H3N2) viruses, 2011–2018. Scientific Reports, 2019, 9, 2676.	1.6	48
23	Evolution and rapid spread of a reassortant A(H3N2) virus that predominated the 2017–2018 influenza season. Virus Evolution, 2019, 5, vez046.	2.2	19
24	Assessing baloxavir susceptibility of influenza viruses circulating in the United States during the 2016/17 and 2017/18 seasons. Eurosurveillance, 2019, 24, .	3.9	86
25	Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine Effectiveness in 2012–2013. Clinical Infectious Diseases, 2018, 67, 327-333.	2.9	53
26	Non-mumps Viral Parotitis During the 2014–2015 Influenza Season in the United States. Clinical Infectious Diseases, 2018, 67, 493-501.	2.9	33
27	The transmission dynamics and diversity of human metapneumovirus in Peru. Influenza and Other Respiratory Viruses, 2018, 12, 508-513.	1.5	6
28	Direct RNA Sequencing of the Coding Complete Influenza A Virus Genome. Scientific Reports, 2018, 8, 14408.	1.6	95
29	Where do all the subtypes go? Temporal dynamics of H8–H12 influenza A viruses in waterfowl. Virus Evolution, 2018, 4, vey025.	2.2	23
30	Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. Journal of Virology, 2018, 92, .	1.5	83
31	Monoclonal antibody against N2 neuraminidase of cold adapted A/Leningrad/134/17/57 (H2N2) enables efficient generation of live attenuated influenza vaccines. Virology, 2018, 522, 65-72.	1.1	3
32	Influenza-Associated Parotitis During the 2014–2015 Influenza Season in the United States. Clinical Infectious Diseases, 2018, 67, 485-492.	2.9	8
33	The effects of repeated automated plasmapheresis in goats (Capra hircus) in response to vaccination with purified influenza hemagglutinin proteins. PLoS ONE, 2018, 13, e0195903.	1.1	O
34	Update: Influenza Activity — United States, October 1, 2017–February 3, 2018. Morbidity and Mortality Weekly Report, 2018, 67, 169-179.	9.0	60
35	Update: Influenza Activity in the United States During the 2017–18 Season and Composition of the 2018–19 Influenza Vaccine. Morbidity and Mortality Weekly Report, 2018, 67, 634-642.	9.0	202
36	Multiplex Reverse Transcription-PCR for Simultaneous Surveillance of Influenza A and B Viruses. Journal of Clinical Microbiology, 2017, 55, 3492-3501.	1.8	29

#	Article	IF	Citations
37	Pathogenicity testing of influenza candidate vaccine viruses in the ferret model. Virology, 2017, 511, 135-141.	1.1	18
38	Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. Journal of Virology, 2017, 91, .	1.5	14
39	A Pyrosequencing-Based Approach to High-Throughput Identification of Influenza A(H3N2) Virus Clades Harboring Antigenic Drift Variants. Journal of Clinical Microbiology, 2017, 55, 145-154.	1.8	6
40	Assessment of Molecular, Antigenic, and Pathological Features of Canine Influenza A(H3N2) Viruses That Emerged in the United States. Journal of Infectious Diseases, 2017, 216, S499-S507.	1.9	28
41	Antiviral Drug–Resistant Influenza B Viruses Carrying H134N Substitution in Neuraminidase, Laos, February 2016. Emerging Infectious Diseases, 2017, 23, 686-690.	2.0	11
42	Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus. Journal of General Virology, 2017, 98, 577-584.	1.3	15
43	Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Neglected Tropical Diseases, 2017, 11, e0005693.	1.3	56
44	The effective rate of influenza reassortment is limited during human infection. PLoS Pathogens, 2017, 13, e1006203.	2.1	42
45	<i>Update</i> : Influenza Activity â€" United States and Worldwide, May 21â€"September 23, 2017. Morbidity and Mortality Weekly Report, 2017, 66, 1043-1051.	9.0	34
46	Update: Influenza Activity $\hat{a} \in$ "United States, October $1\hat{a} \in$ "November 25, 2017. Morbidity and Mortality Weekly Report, 2017, 66, 1318-1326.	9.0	16
47	Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathogens, 2016, 12, e1005620.	2.1	48
48	Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses. Journal of Virology, 2016, 90, 5770-5784.	1.5	52
49	Introduction, Evolution, and Dissemination of Influenza A Viruses in Exhibition Swine in the United States during 2009 to 2013. Journal of Virology, 2016, 90, 10963-10971.	1.5	22
50	Deep Sequencing of Influenza A Virus from a Human Challenge Study Reveals a Selective Bottleneck and Only Limited Intrahost Genetic Diversification. Journal of Virology, 2016, 90, 11247-11258.	1.5	97
51	Molecular epidemiology of human enterovirus 71 at the origin of an epidemic of fatal hand, foot and mouth disease cases in Cambodia. Emerging Microbes and Infections, 2016, 5, 1-9.	3.0	54
52	Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus. Journal of Virology, 2016, 90, 8454-8463.	1.5	42
53	A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses. MSystems, 2016, 1, .	1.7	28
54	Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. Journal of Virological Methods, 2016, 227, 33-39.	1.0	11

#	Article	IF	CITATIONS
55	Evolutionary Dynamics of Influenza A Viruses in US Exhibition Swine. Journal of Infectious Diseases, 2016, 213, 173-182.	1.9	28
56	Quantifying influenza virus diversity and transmission in humans. Nature Genetics, 2016, 48, 195-200.	9.4	182
57	Comparative <i>In Vitro</i> and <i>In Vivo</i> Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8]. Journal of Virology, 2016, 90, 142-151.	1.5	19
58	Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh. PLoS ONE, 2016, 11, e0152131.	1,1	41
59	Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012. Emerging Infectious Diseases, 2015, 21, 1330-1338.	2.0	29
60	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	1.5	29
61	H7N9 influenza A virus in turkeys in Minnesota. Journal of General Virology, 2015, 96, 269-276.	1.3	12
62	Long-term surveillance of H7 influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the precursors of highly pathogenic strains in domestic poultry?. Emerging Microbes and Infections, 2015, 4, 1-9.	3.0	25
63	Evolution of Influenza B Virus in Kuala Lumpur, Malaysia, between 1995 and 2008. Journal of Virology, 2015, 89, 9689-9692.	1.5	10
64	Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. Journal of Virology, 2015, 89, 5651-5667.	1.5	7
65	Spread and Persistence of Influenza A Viruses in Waterfowl Hosts in the North American Mississippi Migratory Flyway. Journal of Virology, 2015, 89, 5371-5381.	1.5	29
66	Equine and Canine Influenza H3N8 Viruses Show Minimal Biological Differences Despite Phylogenetic Divergence. Journal of Virology, 2015, 89, 6860-6873.	1.5	36
67	Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data. Journal of General Virology, 2015, 96, 2050-2060.	1.3	23
68	Whole genome detection of rotavirus mixed infections in human, porcine and bovine samples co-infected with various rotavirus strains collected from sub-Saharan Africa. Infection, Genetics and Evolution, 2015, 31, 321-334.	1.0	42
69	Global migration of influenza A viruses in swine. Nature Communications, 2015, 6, 6696.	5. 8	128
70	The soft palate is an important site of adaptation for transmissible influenza viruses. Nature, 2015, 526, 122-125.	13.7	133
71	Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses. Journal of Virology, 2015, 89, 11935-11944.	1.5	31
72	Phylodynamics of Enterovirus A71-Associated Hand, Foot, and Mouth Disease in Viet Nam. Journal of Virology, 2015, 89, 8871-8879.	1,5	51

#	Article	IF	Citations
73	Isolation of Type A Influenza Viruses from Red-necked Grebes (<i>Podiceps grisegena</i>). Journal of Wildlife Diseases, 2015, 51, 290-293.	0.3	2
74	Whole genome analyses of G1P[8] rotavirus strains from vaccinated and non-vaccinated South African children presenting with diarrhea. Journal of Medical Virology, 2015, 87, 79-101.	2.5	36
75	The contrasting phylodynamics of human influenza B viruses. ELife, 2015, 4, e05055.	2.8	166
76	Standardized Metadata for Human Pathogen/Vector Genomic Sequences. PLoS ONE, 2014, 9, e99979.	1.1	34
77	Equine Influenza A(H3N8) Virus Isolated from Bactrian Camel, Mongolia. Emerging Infectious Diseases, 2014, 20, 2144-2147.	2.0	42
78	Whole-genome analyses of DS-1-like human G2P[4] and G8P[4] rotavirus strains from Eastern, Western and Southern Africa. Virus Genes, 2014, 49, 196-207.	0.7	29
79	Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus. PLoS Pathogens, 2014, 10, e1004420.	2.1	58
80	Universal Influenza B Virus Genomic Amplification Facilitates Sequencing, Diagnostics, and Reverse Genetics. Journal of Clinical Microbiology, 2014, 52, 1330-1337.	1.8	86
81	Genomic analyses detect Eurasianâ€lineage H10 and additional H14 influenza A viruses recovered from waterfowl in the Central United States. Influenza and Other Respiratory Viruses, 2014, 8, 493-498.	1.5	19
82	Genomewide Analysis of Reassortment and Evolution of Human Influenza A(H3N2) Viruses Circulating between 1968 and 2011. Journal of Virology, 2014, 88, 2844-2857.	1.5	137
83	The evolutionary dynamics of influenza A and B viruses in the tropical city of Managua, Nicaragua. Virology, 2014, 462-463, 81-90.	1.1	6
84	Analysis of Recombinant H7N9 Wild-Type and Mutant Viruses in Pigs Shows that the Q226L Mutation in HA Is Important for Transmission. Journal of Virology, 2014, 88, 8153-8165.	1.5	52
85	Introductions and Evolution of Human-Origin Seasonal Influenza A Viruses in Multinational Swine Populations. Journal of Virology, 2014, 88, 10110-10119.	1.5	88
86	Standards for Sequencing Viral Genomes in the Era of High-Throughput Sequencing. MBio, 2014, 5, e01360-14.	1.8	89
87	North Atlantic Migratory Bird Flyways Provide Routes for Intercontinental Movement of Avian Influenza Viruses. PLoS ONE, 2014, 9, e92075.	1.1	65
88	Sequencing viral genomes from a single isolated plaque. Virology Journal, 2013, 10, 181.	1.4	16
89	Evolution of a reassortant North American gull influenza virus lineage: drift, shift and stability. Virology Journal, 2013, 10, 179.	1.4	34
90	Synthetic Generation of Influenza Vaccine Viruses for Rapid Response to Pandemics. Science Translational Medicine, 2013, 5, 185ra68.	5.8	164

#	Article	IF	Citations
91	Complete Genome Sequence of a Reassortant H14N2 Avian Influenza Virus from California. Genome Announcements, 2013, 1, .	0.8	11
92	Migration and Persistence of Human Influenza A Viruses, Vietnam, 2001–2008. Emerging Infectious Diseases, 2013, 19, 1756-1765.	2.0	16
93	Avian Influenza: Mixed Infections and Missing Viruses. Viruses, 2013, 5, 1964-1977.	1.5	18
94	Influenza A Virus Migration and Persistence in North American Wild Birds. PLoS Pathogens, 2013, 9, e1003570.	2.1	83
95	Sequence Analysis of <i>In Vivo</i> Defective Interfering-Like RNA of Influenza A H1N1 Pandemic Virus. Journal of Virology, 2013, 87, 8064-8074.	1.5	144
96	Asparagine Substitution at PB2 Residue 701 Enhances the Replication, Pathogenicity, and Transmission of the 2009 Pandemic H1N1 Influenza A Virus. PLoS ONE, 2013, 8, e67616.	1.1	54
97	Antiviral Responses by Swine Primary Bronchoepithelial Cells Are Limited Compared to Human Bronchoepithelial Cells Following Influenza Virus Infection. PLoS ONE, 2013, 8, e70251.	1.1	16
98	Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination. Journal of General Virology, 2012, 93, 2387-2398.	1.3	25
99	Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine, 2012, 30, 3691-3702.	1.7	34
100	Genomic reassortment of influenza A virus in North American swine, 1998–2011. Journal of General Virology, 2012, 93, 2584-2589.	1.3	40
101	Decreased Serologic Response in Vaccinated Military Recruits during 2011 Correspond to Genetic Drift in Concurrent Circulating Pandemic A/H1N1 Viruses. PLoS ONE, 2012, 7, e34581.	1.1	13
102	Influenza A Virus Molecular Virology Techniques. Methods in Molecular Biology, 2012, 865, 175-192.	0.4	82
103	Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecology Letters, 2012, 15, 24-33.	3.0	86
104	Innate Immune Response of Human Alveolar Macrophages during Influenza A Infection. PLoS ONE, 2012, 7, e29879.	1.1	113
105	Reverse genetics plasmid for cloning unstable Influenza A virus gene segments. Journal of Virological Methods, 2011, 173, 378-383.	1.0	19
106	Deep Sequencing Reveals Mixed Infection with 2009 Pandemic Influenza A (H1N1) Virus Strains and the Emergence of Oseltamivir Resistance. Journal of Infectious Diseases, 2011, 203, 168-174.	1.9	113
107	Phylogeography of the Spring and Fall Waves of the H1N1/09 Pandemic Influenza Virus in the United States. Journal of Virology, 2011, 85, 828-834.	1.5	54
108	Extensive Geographical Mixing of 2009 Human H1N1 Influenza A Virus in a Single University Community. Journal of Virology, 2011, 85, 6923-6929.	1.5	43

#	Article	IF	CITATIONS
109	Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19359-19364.	3.3	146
110	PB2 Residue 158 Is a Pathogenic Determinant of Pandemic H1N1 and H5 Influenza A Viruses in Mice. Journal of Virology, 2011, 85, 357-365.	1.5	118
111	Unseasonal Transmission of H3N2 Influenza A Virus During the Swine-Origin H1N1 Pandemic. Journal of Virology, 2010, 84, 5715-5718.	1.5	15
112	NS-based live attenuated H1N1 pandemic vaccines protect mice and ferrets. Vaccine, 2010, 28, 8015-8025.	1.7	48
113	Single-Reaction Genomic Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses. Journal of Virology, 2009, 83, 10309-10313.	1.5	493
114	The early diversification of influenza A/H1N1pdm. PLOS Currents, 2009, 1, RRN1126.	1.4	121
115	Triaryl Pyrazoline Compound Inhibits Flavivirus RNA Replication. Antimicrobial Agents and Chemotherapy, 2006, 50, 1320-1329.	1.4	107
116	Mustela Vison ACE2 Functions as a Receptor for Sars-Coronavirus. Advances in Experimental Medicine and Biology, 2006, 581, 507-510.	0.8	12
117	Increased Viral Titers and Subtle Changes in Plaque Morphology Upon Passage of SARS-CoV in Cells from Different Species. Advances in Experimental Medicine and Biology, 2006, 581, 259-263.	0.8	3
118	Analysis of SARS-CoV Receptor Activity of ACE2 Orthologs. Advances in Experimental Medicine and Biology, 2006, 581, 277-280.	0.8	5
119	Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology, 2005, 335, 185-197.	1.1	35
120	Mice Susceptible to SARS Coronavirus. Emerging Infectious Diseases, 2004, 10, 1293-1296.	2.0	59
121	Discovery of Novel Human and Animal Cells Infected by the Severe Acute Respiratory Syndrome Coronavirus by Replication-Specific Multiplex Reverse Transcription-PCR. Journal of Clinical Microbiology, 2004, 42, 3196-3206.	1.8	85
122	CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15748-15753.	3.3	536
123	Identification of a Receptor-Binding Domain of the Spike Glycoprotein of Human Coronavirus HCoV-229E. Journal of Virology, 2003, 77, 2530-2538.	1.5	170
124	Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation. Journal of Virology, 2001, 75, 9741-9752.	1.5	102