Chun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly covalent molecular cage based porous organic polymer: pore size control and pore property enhancement. RSC Advances, 2022, 12, 16486-16490.	3.6	2
2	Enhancement of saccharification and ethanol conversion from tobacco stalks by chemical pretreatment. Biomass Conversion and Biorefinery, 2021, 11, 1085-1092.	4.6	12
3	Molecular Engineering for Organic Cage Frameworks with Fixed Pore Size to Tune Their Porous Properties and Improve CO ₂ Capture. ACS Applied Polymer Materials, 2021, 3, 171-177.	4.4	9
4	Heteroatom Engineering of Hyper-Cross-Linked Polymers for Iodine Capture. ACS Applied Polymer Materials, 2021, 3, 209-215.	4.4	20
5	Triptyceneâ€based Chiral Porous Polyimides for Enantioselective Membrane Separation. Angewandte Chemie - International Edition, 2021, 60, 12781-12785.	13.8	31
6	Triptyceneâ€based Chiral Porous Polyimides for Enantioselective Membrane Separation. Angewandte Chemie, 2021, 133, 12891-12895.	2.0	6
7	Emissive oxidase-like nanozyme based on an organic molecular cage. Chemical Communications, 2021, 57, 11541-11544.	4.1	8
8	Microporous polymer based on hexaazatriphenylene-fused triptycene for CO2 capture and conversion. Science China Materials, 2020, 63, 429-436.	6.3	9
9	Highly dispersed gold nanoparticles anchoring on post-modified covalent organic framework for catalytic application. Chemical Engineering Journal, 2020, 391, 123471.	12.7	72
10	Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells. Journal of the American Chemical Society, 2020, 142, 512-519.	13.7	102
11	A robust glycan labeling strategy using a new cationic hydrazide tag for MALDI-MS-based rapid and sensitive glycomics analysis. Talanta, 2020, 219, 121356.	5.5	12
12	Switching porosity of stable triptycene-based cage <i>via</i> solution-state assembly processes. RSC Advances, 2020, 10, 9088-9092.	3.6	8
13	Pentiptycene-based microporous polymer for removal of organic dyes from water. European Polymer Journal, 2019, 120, 109216.	5.4	7
14	One-step preparation of multifunctional alginate microspheres loaded with <i>in situ</i> -formed gold nanostars as a photothermal agent. Materials Chemistry Frontiers, 2019, 3, 2018-2024.	5.9	10
15	Hyperporous Carbon from Triptyceneâ€Based Hypercrosslinked Polymer for Iodine Capture. Advanced Materials Interfaces, 2019, 6, 1900249.	3.7	35
16	Porous carbon from tobacco stalk for removal of organic dyes from water. RSC Advances, 2019, 9, 33848-33852.	3.6	6
17	Tetraphenylethylene Foldamers with Double Hairpinâ€Turn Linkers, TNTâ€Binding Mode and Detection of Highly Diluted TNT Vapor. Chemistry - A European Journal, 2018, 24, 2004-2012.	3.3	15
18	Temperature-sensitive poly(phenyleneethynylene) nanomedicines for intracellular tracking via fluorescence resonance energy transfer. Polymer Chemistry, 2018, 9, 1045-1051.	3.9	3

CHUN ZHANG

#	Article	IF	CITATIONS
19	A Highly Reversible Mechanochromic Difluorobenzothiadiazole Dye with Nearâ€Infrared Emission. Chemistry - A European Journal, 2018, 24, 3671-3676.	3.3	52
20	Frontispiece: A Highly Reversible Mechanochromic Difluorobenzothiadiazole Dye with Nearâ€Infrared Emission. Chemistry - A European Journal, 2018, 24, .	3.3	0
21	Porous Organic Polymer from Aggregation-Induced Emission Macrocycle for White-Light Emission. Macromolecules, 2018, 51, 7863-7871.	4.8	24
22	Efficient alkaloid capture from water using a charged porous organic polymer. RSC Advances, 2018, 8, 33398-33402.	3.6	3
23	Networked Cages for Enhanced CO ₂ Capture and Sensing. Advanced Science, 2018, 5, 1800141.	11.2	65
24	Hyperporousâ€Carbonâ€Supported Nonprecious Metal Electrocatalysts for the Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 2671-2676.	3.3	13
25	Electrospun nanofibrous membrane of porous fluorine-containing triptycene-based polyimides for oil/water separation. RSC Advances, 2017, 7, 22548-22552.	3.6	24
26	A triptycene-based two-dimensional porous organic polymeric nanosheet. Polymer Chemistry, 2017, 8, 5533-5538.	3.9	32
27	Gemini Surfactants Templated Mesoporous Silica Microparticles: from Solid to Hollow Mesoporous Spheres. Chinese Journal of Chemistry, 2017, 35, 1706-1710.	4.9	9
28	Porous Triphenylbenzene-Based Bicyclooxacalixarene Cage for Selective Adsorption of CO ₂ /N ₂ . Organic Letters, 2016, 18, 4574-4577.	4.6	24
29	Nitrogen-Rich Triptycene-Based Porous Polymer for Gas Storage and Iodine Enrichment. ACS Macro Letters, 2016, 5, 1039-1043.	4.8	143
30	Microporous Polymers from a Carbazoleâ€Based Triptycene Monomer: Synthesis and Their Applications for Gas Uptake. Chemistry - an Asian Journal, 2016, 11, 294-298.	3.3	36
31	Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer, 2016, 82, 100-104.	3.8	32
32	Bromine Bonding Induced Selective Recognition of Different Guests for Hexaphenylbenzene Bromides in the Solid State. Chinese Journal of Chemistry, 2015, 33, 1031-1036.	4.9	1
33	Selective killing of hepatocellular carcinoma HepC2 cells by three-dimensional nanographene nanoparticles based on triptycene. Nanoscale, 2015, 7, 5217-5229.	5.6	19
34	Temperature-Sensitive Fluorescent Organic Nanoparticles with Aggregation-Induced Emission for Long-Term Cellular Tracing. ACS Applied Materials & amp; Interfaces, 2015, 7, 3420-3425.	8.0	116
35	Multicolor Emissions by the Synergism of Intra/Intermolecular Slipped ï€â€"ï€ Stackings of Tetraphenylethylene-DiBODIPY Conjugate. Chemistry of Materials, 2015, 27, 7812-7819.	6.7	58
36	A Porous Tricyclooxacalixarene Cage Based on Tetraphenylethylene. Angewandte Chemie - International Edition, 2015, 54, 9244-9248.	13.8	127

CHUN ZHANG

#	Article	IF	CITATIONS
37	Altering synthetic fragments to tune the AIE properties and self-assemble grid-like structures of TPE-based oxacalixarenes. RSC Advances, 2015, 5, 76670-76674.	3.6	20
38	Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment. Macromolecules, 2015, 48, 8509-8514.	4.8	178
39	Synthesis and structures of Hexa-peri-hexabenzocoronene-based triptycenes. Tetrahedron Letters, 2014, 55, 521-524.	1.4	14
40	Three-dimensional nanographene based on triptycene for detection of nitroaromatic explosives. Tetrahedron Letters, 2014, 55, 6277-6280.	1.4	17
41	Triptycene-based microporous polyimides: Synthesis and their high selectivity for CO2 capture. Polymer, 2014, 55, 3642-3647.	3.8	55
42	Tetraphenylethylene-Based Expanded Oxacalixarene: Synthesis, Structure, and Its Supramolecular Grid Assemblies Directed by Guests in the Solid State. Journal of Organic Chemistry, 2014, 79, 2729-2732.	3.2	53
43	Microfluidization-assisted synthesis of hollow mesoporous silica nanoparticles. Journal of Sol-Gel Science and Technology, 2013, 67, 501-506.	2.4	12
44	Controllable synthesis of hollow mesoporous silica nanoparticles templated by kinetic self-assembly using a gemini surfactant. RSC Advances, 2013, 3, 16304.	3.6	27
45	Synthesis and properties of triptycene-based microporous polymers. Polymer, 2013, 54, 6942-6946.	3.8	31
46	Organic microporous polymer from a hexaphenylbenzene based triptycene monomer: synthesis and its gas storage properties. Polymer Chemistry, 2013, 4, 3663.	3.9	41
47	Mainâ€Chain Organometallic Microporous Polymers Based on Triptycene: Synthesis and Catalytic Application in the Suzuki–Miyaura Coupling Reaction. Chemistry - A European Journal, 2013, 19, 5004-5008.	3.3	68
48	Three-Dimensional Nanographene Based on Triptycene: Synthesis and Its Application in Fluorescence Imaging. Organic Letters, 2012, 14, 5912-5915.	4.6	59
49	Triptycene-Based Microporous Polymers: Synthesis and Their Gas Storage Properties. ACS Macro Letters, 2012, 1, 190-193.	4.8	135
50	Supramolecular Gelâ€Assisted Formation of Fullerene Nanorods. Chemistry - A European Journal, 2012, 18, 14954-14956.	3.3	16
51	Synthesis, Structure and Properties of Benzo[1,2â€ <i>f</i> :5,4â€ <i>f′</i>]â€diquinoline Derivatives: A Remarkably Strong Intramolecular CH··A·O Hydrogen Bond. Chinese Journal of Chemistry, 2011, 29, 2606-2610.	4.9	5
52	Efficient synthesis and resolution of meta-substituted inherently chiral aminocalix[4]arene derivatives. Science Bulletin, 2010, 55, 2859-2869.	1.7	12
53	Synthesis and analysis of hydroxyl substituted triptycene adducts: the competitive recognition between the hydroxyl substituted triptycenes with 4, 4′-bipyridine and solvent molecules. CrystEngComm, 2010, 12, 3255.	2.6	25
54	Synthesis and Structure of A Triptycene-Based Nanosized Molecular Cage. Journal of Organic Chemistry, 2007, 72, 9339-9341.	3.2	106

CHUN ZHANG

#	Article	IF	CITATIONS
55	Triptycene-Based Expanded Oxacalixarenes:Â Synthesis, Structure, and Tubular Assemblies in the Solid State. Journal of Organic Chemistry, 2007, 72, 3880-3888.	3.2	111
56	Self-Assembly of Triptycene-Based Cylindrical Macrotricyclic Host with Dibenzylammonium Ions: Construction of Dendritic [3]Pseudorotaxanes. Organic Letters, 2006, 8, 1859-1862.	4.6	61
57	Synthesis and Structure of 2,6,14- and 2,7,14-Trisubstituted Triptycene Derivatives. Journal of Organic Chemistry, 2006, 71, 6626-6629.	3.2	117
58	Synthesis of Nitrogenâ€Containing Chiral Calix[4]arene Crown and Semiâ€crown Ether. Synthetic Communications, 2004, 34, 679-688.	2.1	4