
Shanshan Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880608/publications.pdf Version: 2024-02-01

Shanshan Yu

#	Article	IF	CITATIONS
1	From MonoBINOL to BisBINOL: Expanded Enantioselective Fluorescent Recognition of Amino Acids. Journal of Organic Chemistry, 2021, 86, 6780-6786.	3.2	13
2	Semiquantitative Visual Chiral Assay with a Pseudoenantiomeric Fluorescent Sensor Pair. Journal of Organic Chemistry, 2021, 86, 9603-9609.	3.2	5
3	A metal-free fluorescent probe for selective detection of histidine. Tetrahedron, 2021, 95, 132366.	1.9	6
4	Adaption of an autonomously cascade DNA circuit for amplified detection and intracellular imaging of polynucleotide kinase with ultralow background. Biosensors and Bioelectronics, 2020, 152, 111994.	10.1	26
5	Chemoselective and enantioselective fluorescent recognition of glutamic and aspartic acids. Chemical Communications, 2020, 56, 15012-15015.	4.1	12
6	A near-IR Fluorescent Probe for Enantioselective Recognition of Amino Acids in Aqueous Solution. Journal of Organic Chemistry, 2020, 85, 7342-7348.	3.2	21
7	Opposite Enantioselectivity of Mg(II) Versus Zn(II) in the Fluorescent Recognition of Amino Acids. Journal of Organic Chemistry, 2020, 85, 4901-4905.	3.2	3
8	Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors. Nanoscale, 2020, 12, 5227-5232.	5.6	45
9	Sulfonation of 3,3′â€Diformylâ€BINOL for Enantioselective Fluorescent Recognition of Amino Acids in Water. Chemistry - A European Journal, 2020, 26, 7258-7262.	3.3	9
10	Self-Propelled and Targeted Drug Delivery of Poly(aspartic acid)/Iron–Zinc Microrocket in the Stomach. ACS Nano, 2019, 13, 1324-1332.	14.6	57
11	Simultaneous Determination of Concentration and Enantiomeric Composition of Amino Acids in Aqueous Solution by Using a Tetrabromobinaphthyl Dialdehyde Probe. Chemistry - A European Journal, 2019, 25, 9967-9972.	3.3	10
12	Fluorescent Recognition of Functional Secondary Amines in the Fluorous Phase. European Journal of Organic Chemistry, 2019, 2019, 2533-2538.	2.4	3
13	Fluorescent Recognition of 1,3â€Điaminopropane in the Fluorous Phase – Greatly Enhanced Sensitivity and Selectivity. European Journal of Organic Chemistry, 2018, 2018, 1053-1059.	2.4	6
14	<i>O</i> â€Alkylation of 3â€Formylâ€BINOL and Its Strong Effect on the Fluorescence Recognition of 1,3â€Diaminopropane. European Journal of Organic Chemistry, 2018, 2018, 4972-4977.	2.4	9
15	Fluorousâ€Phaseâ€Based Chiral Assay with Circular Dichroism Spectroscopy. European Journal of Organic Chemistry, 2017, 2017, 1413-1417.	2.4	6
16	Recognition of Chiral Amines by a Terpyridine–Zn II omplexâ€Based Circularâ€Dichroism Sensor. European Journal of Organic Chemistry, 2017, 2017, 2338-2343.	2.4	9
17	Development of Aldehydeâ€Based Fluorescent Probes for Highly Selective Recognition of 1,3â€Diaminopropane. European Journal of Organic Chemistry, 2017, 2017, 4990-4994.	2.4	13
18	Polymer Amplified Enantioselectivity in the Fluorescent Recognition of Prolinol. Chemistry - A European Journal, 2017, 23, 17678-17681.	3.3	9

Shanshan Yu

#	Article	IF	CITATIONS
19	Enhanced Fluorescence of 3,3′-Diformyl BINOL by Functional Secondary Amines. Organic Letters, 2017, 19, 3779-3782.	4.6	16
20	Highly selective ratiometric fluorescent recognition of histidine by tetraphenylethene–terpyridine–Zn(ii) complexes. RSC Advances, 2016, 6, 25319-25329.	3.6	12
21	Ratiometric Fluorescence Sensors for 1,2â€Diamines Based on Trifluoromethyl Ketones. European Journal of Organic Chemistry, 2016, 2016, 5868-5875.	2.4	13
22	Fluorescent Recognition of 1,2â€Ðiamines by a 1,1′â€Binaphthylâ€Based Trifluoromethyl Ketone. Chemistry - A European Journal, 2016, 22, 12061-12067.	3.3	18
23	Greatly Enhanced Fluorescence by Increasing the Structural Rigidity of an Imine: Enantioselective Recognition of 1,2 yclohexanediamine by a Chiral Aldehyde. Chemistry - A European Journal, 2016, 22, 5963-5968.	3.3	14
24	Spectroscopic studies on the interaction of terpyridine-CuCl ₂ with cysteine. RSC Advances, 2015, 5, 53905-53910.	3.6	5
25	Rational Design of a Fluorescent Sensor to Simultaneously Determine Both the Enantiomeric Composition and the Concentration of Chiral Functional Amines. Journal of the American Chemical Society, 2015, 137, 4517-4524.	13.7	108
26	1,1′-Bi-2-naphthol-fluoroacetyl compounds in fluorescent recognition of amines. Organic Chemistry Frontiers, 2014, 1, 395-404.	4.5	5
27	Zn(<scp>ii</scp>) promoted dramatic enhancement in the enantioselective fluorescent recognition of functional chiral amines by a chiral aldehyde. Chemical Science, 2014, 5, 3457-3462.	7.4	89
28	Feature extraction of vigilance level based on Heart Rate Variability of Electrocardiogram. , 2011, , .		5
29	Enantioselective Fluorescent Recognition of βâ€Amino Alcohols by a Stereoselective Cyclization. European Journal of Organic Chemistry, 0, , .	2.4	2