Rajesh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880279/publications.pdf

Version: 2024-02-01

89 papers 5,324 citations

39 h-index 71 g-index

90 all docs 90 docs citations

90 times ranked 6816 citing authors

#	Article	IF	CITATIONS
1	Luminescence and photodetection characteristics of rare earth–doped zinc oxide nanostructures. , 2022, , 263-294.		1
2	Ti ₃ C ₂ T <i>_x</i> MXene as Electrocatalyst for Designing Robust Glucose Biosensors. Advanced Materials Technologies, 2022, 7, .	3.0	12
3	Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sensors and Actuators B: Chemical, 2021, 326, 128851.	4.0	48
4	Colloidal synthesis of NiMn2O4 nanodisks decorated reduced graphene oxide for electrochemical applications. Microchemical Journal, 2021, 160, 105630.	2.3	24
5	ZnO–SnO2 nanocubes for fluorescence sensing and dye degradation applications. Ceramics International, 2021, 47, 6201-6210.	2.3	39
6	Gas sensor device for high-performance ethanol sensing using α-MnO2 nanoparticles. Materials Letters, 2021, 286, 129232.	1.3	22
7	Methylene blue intercalated layered MnO2 nanosheets for high-sensitive non-enzymatic ascorbic acid sensor. Journal of Materials Science: Materials in Electronics, 2021, 32, 8317-8329.	1.1	6
8	Star-Fruit-Shaped CuO Structures for High Performance Ethanol Gas Sensor Device. Science of Advanced Materials, 2021, 13, 724-733.	0.1	5
9	Low-temperature synthesis of cadmium-doped zinc oxide nanosheets for enhanced sensing and environmental remediation applications. Journal of Alloys and Compounds, 2021, 863, 158649.	2.8	9
10	Highly sensitive and selective 2-nitroaniline chemical sensor based on Ce-doped SnO2 nanosheets/Nafion-modified glassy carbon electrode. Advanced Composites and Hybrid Materials, 2021, 4, 1015-1026.	9.9	35
11	α-MnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device. Coatings, 2021, 11, 860.	1.2	7
12	Ultrathin Leaf-Shaped CuO Nanosheets Based Sensor Device for Enhanced Hydrogen Sulfide Gas Sensing Application. Chemosensors, 2021, 9, 221.	1.8	5
13	CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environmental Research, 2021, 200, 111377.	3.7	42
14	Spindle-like Co3O4-ZnO Nanocomposites Scaffold for Hydrazine Sensing and Photocatalytic Degradation of Rhodamine B Dye. Engineered Science, 2021, , .	1.2	16
15	Nano/micro-scaled materials based optical biosensing of glucose. Ceramics International, 2021, , .	2.3	9
16	Co-Doped ZnO Nano-Agglomerates as a Potential Scaffold for Non-Enzymatic Hydrogen Peroxide Sensing. Science of Advanced Materials, 2021, 13, 1732-1738.	0.1	1
17	Efficient H2 gas sensor based on 2D SnO2 disks: Experimental and theoretical studies. International Journal of Hydrogen Energy, 2020, 45, 26388-26401.	3.8	57
18	Fern shaped La2O3 nanostructures as potential scaffold for efficient hydroquinone chemical sensing application. Ceramics International, 2020, 46, 5141-5148.	2.3	25

#	Article	IF	CITATIONS
19	Square disksâ€based crossed architectures of SnO2 for ethanol gas sensing applications—An experimental and theoretical investigation. Sensors and Actuators B: Chemical, 2020, 304, 127352.	4.0	34
20	Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. Electrochimica Acta, 2020, 363, 137158.	2.6	50
21	NiCo2O4 Nano-/Microstructures as High-Performance Biosensors: A Review. Nano-Micro Letters, 2020, 12, 122.	14.4	62
22	Study of structural, optical and electrochemical properties of ZnO nanostructures and ZnO-PANI nanocomposites. Materials Research Express, 2020, 7, 025024.	0.8	9
23	Iron-Doped Titanium Dioxide Nanoparticles As Potential Scaffold for Hydrazine Chemical Sensor Applications. Coatings, 2020, 10, 182.	1.2	18
24	An efficient chemical sensor based on CeO2 nanoparticles for the detection of acetylacetone chemical. Journal of Electroanalytical Chemistry, 2020, 864, 114089.	1.9	34
25	High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sensors and Actuators B: Chemical, 2019, 298, 126870.	4.0	209
26	Synthesis and characterization of cellulose based graft copolymers with binary vinyl monomers for efficient removal of cationic dyes and Pb(II) ions. Journal of Polymer Research, 2019, 26, 1.	1.2	12
27	Functionalized cellulose with hydroxyethyl methacrylate and glycidyl methacrylate for metal ions and dye adsorption applications. International Journal of Biological Macromolecules, 2019, 134, 704-721.	3.6	41
28	Sorption of Ni(II), Pb(II) and Cu(II) ions from aqueous solutions by cellulose grafted with poly(HEMA-co-AAc): Kinetic, isotherm and thermodynamic study. Journal of Environmental Chemical Engineering, 2019, 7, 103088.	3.3	22
29	Synthesis and characterization of cellulose based adsorbents for removal of Ni(II), Cu(II) and Pb(II) ions from aqueous solutions. Reactive and Functional Polymers, 2019, 140, 82-92.	2.0	46
30	Grafting of cellulose with N-isopropylacrylamide and glycidyl methacrylate for efficient removal of Ni(II), Cu(II) and Pd(II) ions from aqueous solution. Separation and Purification Technology, 2019, 219, 249-259.	3.9	62
31	Nitroaniline chemi-sensor based on bitter gourd shaped ytterbium oxide (Yb2O3) doped zinc oxide (ZnO) nanostructures. Ceramics International, 2019, 45, 13825-13831.	2.3	24
32	Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers. Separation and Purification Technology, 2019, 209, 684-697.	3.9	48
33	Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceramics International, 2018, 44, 4392-4399.	2.3	181
34	Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sensors and Actuators B: Chemical, 2018, 256, 656-664.	4.0	200
35	Highly sensitive and selective non-enzymatic monosaccharide and disaccharide sugar sensing based on carbon paste electrodes modified with perforated NiO nanosheets. New Journal of Chemistry, 2018, 42, 964-973.	1.4	26
36	Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks. Sensors and Actuators B: Chemical, 2018, 259, 604-615.	4.0	85

#	Article	IF	CITATIONS
37	Grafted cellulose: a bio-based polymer for durable applications. Polymer Bulletin, 2018, 75, 2213-2242.	1.7	43
38	Removal of organic dyes and metal ions by cross-linked graft copolymers of cellulose obtained from the agricultural residue. Journal of Environmental Chemical Engineering, 2018, 6, 6037-6048.	3.3	30
39	Ag-Doped ZnO Nanoparticles for Enhanced Ethanol Gas Sensing Application. Journal of Nanoscience and Nanotechnology, 2018, 18, 3557-3562.	0.9	44
40	Extraction of Cellulose Micro-Whiskers from Rice Husk: A Greener Approach. Journal of Nanoscience and Nanotechnology, 2018, 18, 3702-3708.	0.9	16
41	Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 2892-2897.	0.9	6
42	Hydroquinone Sensor Based on Neodymium (Nd) Doped ZnO Hexagonal Nanorods. Nanoscience and Nanotechnology Letters, 2018, 10, 351-357.	0.4	3
43	Methanol Gas Sensor Based on ZnO–SnO2 Hollow Urchins. Nanoscience and Nanotechnology Letters, 2018, 10, 1405-1411.	0.4	6
44	Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles. Ceramics International, 2017, 43, 6765-6770.	2.3	97
45	Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. Journal of Molecular Liquids, 2017, 232, 62-93.	2.3	162
46	CuO nanosheets as potential scaffolds for gas sensing applications. Sensors and Actuators B: Chemical, 2017, 250, 24-31.	4.0	137
47	Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea. Biosensors and Bioelectronics, 2017, 98, 254-260.	5.3	59
48	Synthesis and Characterization of CuO Nanodisks for High-Sensitive and Selective Ethanol Gas Sensor Applications. Journal of Nanoscience and Nanotechnology, 2017, 17, 1455-1459.	0.9	23
49	Antimicrobial properties of ZnO nanomaterials: A review. Ceramics International, 2017, 43, 3940-3961.	2.3	388
50	Zinc oxide nanostructure-based dye-sensitized solar cells. Journal of Materials Science, 2017, 52, 4743-4795.	1.7	79
51	Morphologically-dependent photocatalytic and gas sensing application of Dy-doped ZnO nanoparticles. Journal of Alloys and Compounds, 2017, 726, 1274-1285.	2.8	47
52	2D Sn-doped ZnO ultrathin nanosheet networks for enhanced acetone gas sensing application. Ceramics International, 2017, 43, 2418-2423.	2.3	81
53	A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts. Materials, 2017, 10, 795.	1.3	33
54	Fabrication and Characterization of Highly Sensitive Acetone Chemical Sensor Based on ZnO Nanoballs. Materials, 2017, 10, 799.	1.3	15

#	Article	lF	Citations
55	In-Doped ZnO Hexagonal Stepped Nanorods and Nanodisks as Potential Scaffold for Highly-Sensitive Phenyl Hydrazine Chemical Sensors. Materials, 2017, 10, 1337.	1.3	25
56	Ag-doped ZnO nanoellipsoids based highly sensitive gas sensor. Materials Express, 2017, 7, 380-388.	0.2	12
57	Structural and dielectric properties of CTAB modified ZrO2 nanoparticles. AIP Conference Proceedings, 2016, , .	0.3	1
58	Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor. Ceramics International, 2016, 42, 11562-11567.	2.3	46
59	Bi2O2CO3 nanoplates: Fabrication and characterization of highly sensitive and selective cholesterol biosensor. Journal of Alloys and Compounds, 2016, 683, 433-438.	2.8	46
60	Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. Materials and Design, 2016, 105, 16-24.	3.3	100
61	Sm2O3-doped ZnO beech fern hierarchical structures for nitroaniline chemical sensor. Ceramics International, 2016, 42, 16505-16511.	2.3	53
62	Quantum information entropy of Eckart potential. International Journal of Quantum Chemistry, 2016, 116, 1413-1418.	1.0	23
63	Cauliflower-shaped ZnO nanomaterials for electrochemical sensing and photocatalytic applications. Electrochimica Acta, 2016, 222, 463-472.	2.6	36
64	Forced Convective Heat Transfer of MWCNT/Water Nanofluid Under Constant Heat Flux: An Experimental Investigation. Arabian Journal for Science and Engineering, 2016, 41, 599-609.	1.1	23
65	Synthesis and Characterization of Mimosa Pudica Leaves Shaped <l> \hat{l} ±</l>-lron Oxide Nanostructures for Ethanol Chemical Sensor Applications. Journal of Nanoscience and Nanotechnology, 2016, 16, 2944-2949.	0.9	7
66	Platinum nanoparticles decorated carbon nanotubes for highly sensitive 2-nitrophenol chemical sensor. Ceramics International, 2016, 42, 9257-9263.	2.3	27
67	Fabrication of Nitroaniline Chemical Sensor Based on Polyaniline Coated Multi-Walled Carbon Nanotubes. Nanoscience and Nanotechnology Letters, 2016, 8, 193-199.	0.4	1
68	Highly Sensitive Ethanol Gas Sensors Based on Ag-Doped ZnO Nanocones. Nanoscience and Nanotechnology Letters, 2016, 8, 241-246.	0.4	10
69	Poly(Acrylic Acid)/Multi-Walled Carbon Nanotube Composites: Efficient Scaffold for Highly Sensitive 2-Nitrophenol Chemical Sensor. Nanoscience and Nanotechnology Letters, 2016, 8, 200-206.	0.4	5
70	Synthesis of Sn-Doped ZnO Nanostructures for 4-Nitrophenol Chemical Sensor Application. Nanoscience and Nanotechnology Letters, 2016, 8, 827-832.	0.4	8
71	Fabrication and Characterization of Highly Sensitive and Selective Glucose Biosensor Based on ZnO Decorated Carbon Nanotubes. Nanoscience and Nanotechnology Letters, 2016, 8, 853-858.	0.4	7
72	Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications. Journal of Colloid and Interface Science, 2015, 454, 61-68.	5.0	94

#	Article	IF	Citations
73	Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. Journal of Alloys and Compounds, 2015, 629, 167-172.	2.8	98
74	Photoluminescence quenching of Zirconia nanoparticle by surface modification. Applied Surface Science, 2015, 334, 216-221.	3.1	48
75	Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceramics International, 2015, 41, 7773-7782.	2.3	150
76	Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Letters, 2015, 7, 97-120.	14.4	649
77	Experimental investigation of the convective heat transfer characteristics of TiO2/distilled water nanofluids under constant heat flux boundary condition. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 1347-1356.	0.8	18
78	Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. Journal of Alloys and Compounds, 2015, 648, 46-52.	2.8	92
79	Organic–Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring. Chemical Reviews, 2015, 115, 4571-4606.	23.0	429
80	Facile synthesis and photocatalytic activity of cocoon-shaped CuO nanostructures. Materials Letters, 2015, 156, 138-141.	1.3	51
81	Synthesis, characterization and dielectric investigation of ZnO-doped polyaniline nanocomposites. Journal of Information Display, 2015, 16, 49-55.	2.1	6
82	Facile and Rapid Synthesis of ZnO Nanoparticles for Photovoltaic Device Application. Journal of Nanoscience and Nanotechnology, 2015, 15, 6807-6812.	0.9	8
83	ZnO nanostructured thin films: Depositions, properties and applicationsâ€"A review. Materials Express, 2015, 5, 3-23.	0.2	75
84	Pulse Laser Deposited Nanostructured ZnO Thin Films: A Review. Journal of Nanoscience and Nanotechnology, 2014, 14, 1911-1930.	0.9	54
85	Photocatalytic Degradation of Direct Red-23 Dye with ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2014, 14, 7161-7166.	0.9	23
86	A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids. International Journal of Mechanical and Materials Engineering, 2014, 9, .	1.1	50
87	Silica nanowires: Growth, integration, and sensing applications. Mikrochimica Acta, 2014, 181, 1759-1780.	2.5	38
88	Zinc Oxide Nanomaterials for Photocatalytic Degradation of Methyl Orange: A Review. Nanoscience and Nanotechnology Letters, 2014, 6, 631-650.	0.4	60
89	ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Materials Letters, 2013, 97, 100-103.	1.3	156