
Subrata Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying Efficient Cooling Approach of Cylindrical Lithiumâ€ l on Batteries. Energy Technology, 2022, 10, 2100888.	3.8	5
2	Joule Heating and mechanical properties of epoxy/graphene based aerogel composite. Composites Science and Technology, 2022, 218, 109199.	7.8	23
3	Realization of 3D epoxy resin/Ti ₃ C ₂ T _x MXene aerogel composites for low-voltage electrothermal heating. 2D Materials, 2021, 8, 025022.	4.4	17
4	Unused to useful: Recycling plasma chamber coated waste composite of ZnO and α-Fe2O3 into an active material for sustainable waste-water treatment. Chemical Engineering Journal Advances, 2021, 7, 100120.	5.2	4
5	Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. Nanoscale Advances, 2020, 2, 5319-5328.	4.6	10
6	Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition. Nanotechnology, 2020, 31, 425703.	2.6	18
7	Heteroatomâ€Doped and Oxygenâ€Functionalized Nanocarbons for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2020, 10, 2001239.	19.5	362
8	MXene-based 3D porous macrostructures for electrochemical energy storage. JPhys Materials, 2020, 3, 022001.	4.2	42
9	Engineering high-defect densities across vertically-aligned graphene nanosheets to induce photocatalytic reactivity. Carbon, 2020, 168, 32-41.	10.3	22
10	Multi-channel-contained few-layered MoSe2 nanosheet/N-doped carbon hybrid nanofibers prepared using diethylenetriamine as anodes for high-performance sodium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 75, 100-107.	5.8	39
11	Phase-pure VO2 nanoporous structure for binder-free supercapacitor performances. Scientific Reports, 2019, 9, 4621.	3.3	38
12	Emerging Vertical Nanostructures for High-Performance Supercapacitor Applications. Environmental Chemistry for A Sustainable World, 2019, , 163-187.	0.5	2
13	Insights into the electrochemical capacitor performance of transition metal–vertical graphene nanosheet hybrid electrodes. Physical Chemistry Chemical Physics, 2019, 21, 25196-25205.	2.8	20
14	Designing metal oxide-vertical graphene nanosheets structures for 2.6 V aqueous asymmetric electrochemical capacitor. Journal of Industrial and Engineering Chemistry, 2019, 72, 107-116.	5.8	37
15	Mesoporous carbon nanofiber engineered for improved supercapacitor performance. Korean Journal of Chemical Engineering, 2019, 36, 312-320.	2.7	46
16	Coral-Like Yolk–Shell-Structured Nickel Oxide/Carbon Composite Microspheres for High-Performance Li-Ion Storage Anodes. Nano-Micro Letters, 2019, 11, 3.	27.0	54
17	Plasma-electric field controlled growth of oriented graphene for energy storage applications. Journal Physics D: Applied Physics, 2018, 51, 145303.	2.8	22
18	Influence of nitrogen on the growth of vertical graphene nanosheets under plasma. Journal of Materials Science, 2018, 53, 7316-7325.	3.7	10

Subrata Ghosh

#	Article	IF	CITATIONS
19	Aging effects on vertical graphene nanosheets and their thermal stability. Indian Journal of Physics, 2018, 92, 337-342.	1.8	35
20	Temporal-stability of plasma functionalized vertical graphene electrodes for charge storage. Journal of Power Sources, 2018, 401, 37-48.	7.8	34
21	Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Materials, 2018, 14, 297-305.	18.0	63
22	A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide. Korean Journal of Chemical Engineering, 2018, 35, 1389-1408.	2.7	113
23	Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano Structures Nano Objects, 2017, 10, 42-50.	3.5	67
24	Spectroscopically forbidden infra-red emission in Au-vertical graphene hybrid nanostructures. Nanotechnology, 2017, 28, 465703.	2.6	12
25	Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications. Nanotechnology, 2017, 28, 415702.	2.6	39
26	Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte. Journal of Applied Physics, 2017, 122, .	2.5	42
27	Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein Journal of Nanotechnology, 2017, 8, 1658-1670.	2.8	52
28	A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 2016, 18, 22160-22167.	2.8	136
29	Thermal Conductivity and Pressure-Dependent Raman Studies of Vertical Graphene Nanosheets. Journal of Physical Chemistry C, 2016, 120, 25092-25100.	3.1	34
30	MnO2-Vertical graphene nanosheets composite electrodes for energy storage devices. Materials Today: Proceedings, 2016, 3, 1686-1692.	1.8	24
31	Effect of Annealing on the Structural Properties of Vertical Graphene Nanosheets. Advanced Science, Engineering and Medicine, 2016, 8, 146-149.	0.3	9
32	Influence of substrate on nucleation and growth of vertical graphene nanosheets. Applied Surface Science, 2015, 349, 576-581.	6.1	67
33	Flipping growth orientation of nanographitic structures by plasma enhanced chemical vapor deposition. RSC Advances, 2015, 5, 91922-91931.	3.6	22
34	Evolution and defect analysis of vertical graphene nanosheets. Journal of Raman Spectroscopy, 2014, 45, 642-649.	2.5	109
35	Thermal Conduction in Suspended Graphene Layers. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 474-486.	2.1	60
36	Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia. Journal of Applied Physics, 2009, 106, .	2.5	50

SUBRATA GHOSH

#	Article	IF	CITATIONS
37	Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Applied Physics Letters, 2009, 94, 203103.	3.3	461
38	Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008, 92, .	3.3	1,745
39	Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics. , 2008, , .		15
40	Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon. Journal of Applied Physics, 2008, 103, .	2.5	59