
Vipin Hallan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4880196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cloning, Characterization, Expression Analysis, and Agglutination Studies of Novel Gene Encoding β-d-Galactose, N-Acetyl-d-Glucosamine and Lactose-Binding Lectin from Rice Bean (Vigna umbellata). Molecular Biotechnology, 2022, 64, 293-310.	2.4	2
2	Geminivirus-Derived Vectors as Tools for Functional Genomics. Frontiers in Microbiology, 2022, 13, 799345.	3.5	9
3	A machine learning-based approach to determine infection status in recipients of BBV152 (Covaxin) whole-virion inactivated SARS-CoV-2 vaccine for serological surveys. Computers in Biology and Medicine, 2022, 146, 105419.	7.0	8
4	Molecular insights into pathogenicity determinant proteins of geminiviruses. , 2022, , 383-395.		0
5	Homeobox 27, a Homeodomain Transcription Factor, Confers Tolerances to CMV by Associating with Cucumber Mosaic Virus 2b Protein. Pathogens, 2022, 11, 788.	2.8	1
6	Molecular and biological characterisation of an Indian variant of <i>Chrysanthemum stunt viroid</i> . Archives of Phytopathology and Plant Protection, 2021, 54, 979-989.	1.3	3
7	Insights from a Pan India Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2. ELife, 2021, 10, .	6.0	21
8	Serological and molecular analysis indicates the presence of distinct viral genotypes of Apple stem pitting virus in India. 3 Biotech, 2021, 11, 278.	2.2	2
9	Development of immunodiagnostics for Apple stem pitting virus and Apple mosaic virus infecting apple in India. Indian Phytopathology, 2021, 74, 189-199.	1.2	3
10	Production of polyclonal antibodies to the coat protein gene of Indian isolate ofÂApple stem grooving virusÂexpressed through heterologous expression and its use in immunodiagnosis. Indian Phytopathology, 2020, 73, 165-173.	1.2	3
11	New record of a monopartite begomovirus and papaya leaf curl betasatellite infecting Mirabilis jalapa in Himachal Pradesh, India. Indian Phytopathology, 2020, 73, 821-823.	1.2	2
12	Reactive oxygen species generating and scavenging systems play critical role in conferring leaf spot disease resistance in Withania somnifera (L.) Dunal. Industrial Crops and Products, 2020, 157, 112889.	5.2	10
13	Two light responsive WRKY genes exhibit positive and negative correlation with picroside content in Picrorhiza kurrooa Royle ex Benth, an endangered medicinal herb. 3 Biotech, 2020, 10, 255.	2.2	2
14	PkGPPS.SSU interacts with two PkGGPPS to form heteromeric GPPS in Picrorhiza kurrooa: Molecular insights into the picroside biosynthetic pathway. Plant Physiology and Biochemistry, 2020, 154, 115-128.	5.8	5
15	AV2 protein of tomato leaf curl Palampur virus interacts with F-box Kelch protein of tomato and enhances phenylalanine ammonia-lyase activity during virus infection. Physiological and Molecular Plant Pathology, 2020, 110, 101479.	2.5	3
16	Conformational behavior of coat protein in plants and association with coat protein-mediated resistance against TMV. Brazilian Journal of Microbiology, 2020, 51, 893-908.	2.0	12
17	Beneficial role of viruses in plants. , 2020, , 179-184.		0
18	Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants. International Journal of Molecular Sciences, 2020, 21, 2498.	4.1	10

#	Article	IF	CITATIONS
19	Molecular evidence of Apple stem grooving virus infecting Ficus palmata. Trees - Structure and Function, 2019, 33, 1-9.	1.9	12
20	First report of natural infection of alternanthera yellow vein virus and cotton leaf curl Multan betasatellite on a new host Picrorhiza kurroa, an important endangered medicinal herb. Journal of Plant Pathology, 2019, 101, 149-153.	1.2	5
21	AC4 protein of tomato leaf curl Palampur virus is an RNA silencing suppressor and a pathogenicity determinant. Microbial Pathogenesis, 2019, 135, 103636.	2.9	9
22	Global Weed-Infecting Geminiviruses. , 2019, , 103-121.		2
23	Promoter and methylation status analysis revealed the importance of PkGES gene in picroside biosynthesis in Picrorhiza kurrooa. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 424-436.	1.7	2
24	Molecular characterization and infectivity analysis of a bipartite begomovirus associated with cotton leaf curl Multan betasatellite naturally infecting Rumex nepalensis in northern India. Journal of Plant Pathology, 2019, 101, 935-941.	1.2	11
25	First report of potato virus M, potato virus Y and cucumber mosaic virus infection in Solanum nigrum in India. Journal of Plant Pathology, 2019, 101, 419-419.	1.2	10
26	Occurrence of Apple stem grooving virus on Rubus ellipticus, a perennial weed in India. European Journal of Plant Pathology, 2019, 153, 311-319.	1.7	6
27	Screening of Potential Inhibitor against Coat Protein of Apple Chlorotic Leaf Spot Virus. Cell Biochemistry and Biophysics, 2018, 76, 273-278.	1.8	11
28	AV2 protein of tomato leaf curl Palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2. Scientific Reports, 2018, 8, 1273.	3.3	37
29	Infection of potato virus S and M in tomato in North-western India. Journal of Plant Pathology, 2018, 100, 343-343.	1.2	3
30	Molecular evidence of natural occurrence of Apple stem grooving virus on bamboos. Trees - Structure and Function, 2017, 31, 367-375.	1.9	8
31	Sequenceâ€independent Amplification with Genome Multiplexing to Establish Complete Genome of Multipartite RNA Viruses: <i>Cucumber mosaic virus</i> as a Case Study. Journal of Phytopathology, 2017, 165, 361-366.	1.0	1
32	Molecular characterization of a new begomovirus infecting Mirabilis jalapa in northern India. Archives of Virology, 2017, 162, 2163-2167.	2.1	10
33	Genome Organization of Begomoviruses. , 2017, , 11-32.		1
34	Molecular characterization of emaraviruses associated with Pigeonpea sterility mosaic disease. Scientific Reports, 2017, 7, 11831.	3.3	21
35	Movement protein of Apple chlorotic leaf spot virus is genetically unstable and negatively regulated by Ribonuclease E in E. coli. Scientific Reports, 2017, 7, 2133.	3.3	1

#	Article	IF	CITATIONS
37	Identification of host cellular targets of AC4 and AV2 proteins of tomato leaf curl palampur virus and their sub-cellular localization studies. VirusDisease, 2017, 28, 390-400.	2.0	9
38	Leaf spot disease adversely affects human health-promoting constituents and withanolide biosynthesis in <i>Withania somnifera</i> (L.) Dunal. Journal of Applied Microbiology, 2017, 122, 153-165.	3.1	14
39	Apple Scar Skin Viroid. , 2017, , 217-228.		11
40	Molecular characterization of a novel cryptic virus infecting pigeonpea plants. PLoS ONE, 2017, 12, e0181829.	2.5	10
41	<i>Apple stem grooving virus</i> naturally infects Himalayan wild cherry (<i>Prunuscerasoides</i> D.) Tj ETQq1	1 0,78431 1.1	l4 rgBT /Ove
42	Complete Nucleotide Sequence of <i>Ageratum enation virus</i> and an Alphasatellite Infecting a New Host <i>Glycine max</i> in India. Journal of Phytopathology, 2016, 164, 554-557.	1.0	3
43	Movement Protein of Cucumber Mosaic Virus Associates with Apoplastic Ascorbate Oxidase. PLoS ONE, 2016, 11, e0163320.	2.5	11
44	A simplified strategy for studying the etiology of viral diseases: Apple stem grooving virus as a case study. Journal of Virological Methods, 2015, 213, 106-110.	2.1	6
45	Wild roses as natural reservoirs of Cherry necrotic rusty mottle virus. European Journal of Plant Pathology, 2015, 142, 403-409.	1.7	3
46	Himalayan wild cherry (<i>Prunus cerasoides</i>) as a new natural host of <i>Cherry necrotic rusty mottle virus</i> (<scp>CNRMV</scp>) and a possible role of insect vectors in their transmission. Annals of Applied Biology, 2015, 166, 402-409.	2.5	4
47	Natural occurrence of Apple stem grooving virus on Bauhinia variegata. Trees - Structure and Function, 2015, 29, 1415-1422.	1.9	10
48	Molecular evidence for bamboo as a new natural host ofCherry necrotic rusty mottle virus. Forest Pathology, 2015, 45, 42-50.	1.1	5
49	<i>Apple scar skin viroid</i> naked RNA is actively transmitted by the whitefly <i>Trialeurodes vaporariorum</i> . RNA Biology, 2015, 12, 1131-1138.	3.1	31
50	Immunodiagnostics for Cherry virus A and Cherry necrotic rusty mottle virus. Journal of Plant Biochemistry and Biotechnology, 2015, 24, 93-104.	1.7	10
51	<i>Valeriana jatamansi</i> as a new natural host of <i>Bhendi yellow vein mosaic virus</i> and <i>Papaya leaf curl virus betasatellite</i> from Northern India. New Disease Reports, 2015, 32, 4-4.	0.8	4
52	Association of <i>Bhendi yellow vein mosaic virus</i> and Cotton leaf curl Multan betasatellite with <i>Capsicum annuum</i> From Kashmir valley, India. New Disease Reports, 2015, 32, 9-9.	0.8	4
53	Identification of the herbaceous host range of <i>Apple scar skin viroid</i> and analysis of its progeny variants. Plant Pathology, 2014, 63, 684-690.	2.4	16
54	Characterization of Apple stem grooving virus infecting Actinidia deliciosa (Kiwi) in India. Scientia Horticulturae, 2014, 176, 105-111.	3.6	18

#	Article	IF	CITATIONS
55	Simultaneous Detection of Major Pome Fruit Viruses and a Viroid. Indian Journal of Microbiology, 2014, 54, 203-210.	2.7	27
56	Molecular characterization and intermolecular interaction of coat protein of Prunus necrotic ringspot virus: implications for virus assembly. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2013, 24, 235-241.	0.7	7
57	Biological and Molecular Characterization of Cucumber mosaic virus Subgroup II Isolate Causing Severe Mosaic in Cucumber. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2013, 24, 27-34.	0.7	27
58	Evidence of Grapevine leafroll associated virus-1–3, Grapevine fleck virus and Grapevine virus B Occurring in Himachal Pradesh, India. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2013, 24, 66-69.	0.7	17
59	Molecular identification of Ageratum enation virus, betasatellite and alphasatellite molecules isolated from yellow vein diseased Amaranthus cruentus in India. Virus Genes, 2013, 47, 584-590.	1.6	24
60	<scp>M</scp> olecular <scp>C</scp> haracterization and <scp>R</scp> ecombination <scp>A</scp> nalysis of the <scp>C</scp> omplete <scp>G</scp> enome of <i><scp>A</scp>pple <scp>C</scp>hlorotic <scp>L</scp>eaf <scp>S</scp>pot <scp>V</scp>irus</i> . Journal of Phytopathology, 2013, 161, 704-712.	1.0	11
61	Simultaneous detection and identification of four cherry viruses by two step multiplex RT-PCR with an internal control of plant nad5 mRNA. Journal of Virological Methods, 2013, 193, 103-107.	2.1	21
62	<i>Prunus necrotic ringspot virus</i> : incidence on stone and pome fruits and diversity analysis. Archives of Phytopathology and Plant Protection, 2013, 46, 2376-2386.	1.3	4
63	Determination of Major Viral and Sub Viral Pathogens Incidence in Apple Orchards in Himachal Pradesh. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2012, 23, 75-79.	0.7	20
64	In Vitro Expression and Production of Antibody Against Cymbidium mosaic virus Coat Protein. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2012, 23, 46-49.	0.7	2
65	Genomic sequence analysis of four new chrysanthemum virus B isolates: evidence of RNA recombination. Archives of Virology, 2012, 157, 531-537.	2.1	26
66	Chilli leaf curl Palampur virus is a distinct begomovirus species associated with a betasatellite. Plant Pathology, 2011, 60, 1040-1047.	2.4	39
67	Velvet bean severe mosaic virus: a distinct begomovirus species causing severe mosaic in Mucuna pruriens (L.) DC. Virus Genes, 2011, 43, 138-146.	1.6	20
68	First report of Ageratum enation virus infecting Crassocephalum crepidioides (Benth.) S. Moore and Ageratum conyzoides L. in India. Journal of General Plant Pathology, 2011, 77, 214-216.	1.0	24
69	Expression of recombinant Apple chlorotic leaf spot virus coat protein in heterologous system: production and use in immunodiagnosis. Journal of Plant Biochemistry and Biotechnology, 2011, 20, 138-141.	1.7	4
70	Expression of recombinant Chrysanthemum virus B coat protein for raising polyclonal antisera. Journal of Plant Biochemistry and Biotechnology, 2011, 20, 96-101.	1.7	4
71	Diversity of Apple mosaic virus Isolates in India Based on Coat Protein and Movement Protein Genes. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2011, 22, 44-49.	0.7	25
72	Intermolecular Interactions of Chrysanthemum virus B Coat Protein: Implications for Capsid Assembly. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2011, 22, 111-116.	0.7	6

#	Article	IF	CITATIONS
73	Molecular diagnosis of apple virus and viroid pathogens from India. Archives of Phytopathology and Plant Protection, 2011, 44, 505-512.	1.3	13
74	Detection of <i>Prunus necrotic ring spot virus</i> in plum, cherry and almond by serological and molecular techniques from India. Archives of Phytopathology and Plant Protection, 2011, 44, 1779-1784.	1.3	13
75	Molecular characterization of the phytoplasmas associated with toon trees and periwinkle in India. Journal of General Plant Pathology, 2010, 76, 351-354.	1.0	12
76	Detection and characterization of Ageratum enation virus and a nanovirus-like satellite DNA1 from zinnia causing leaf curl symptoms in India. Journal of General Plant Pathology, 2010, 76, 395-398.	1.0	23
77	Complete nucleotide sequence of cherry virus A (CVA) infecting sweet cherry in India. Archives of Virology, 2010, 155, 2079-2082.	2.1	14
78	Molecular variability analyses of Apple chlorotic leaf spot virus capsid protein. Journal of Biosciences, 2010, 35, 605-615.	1.1	20
79	Analysis of the coat protein gene and untranslated region of RNA3 ofCucumber Mosaic Virusisolates infecting variousLiliumspecies and hybrids: association of the isolate infecting asiatic hybrid lily with subgroup II. Archives of Phytopathology and Plant Protection, 2010, 43, 826-848.	1.3	0
80	Analysis of the Coat Protein Gene of Indian Strain of Apple Stem Grooving Virus. Journal of Plant Biochemistry and Biotechnology, 2010, 19, 91-94.	1.7	21
81	Evidence for the occurrence of a distinct potyvirus on naturally growing Narcissustazettaâ^—â^—. Archives of Phytopathology and Plant Protection, 2010, 43, 209-214.	1.3	4
82	Molecular characterization and variability analysis of Apple scar skin viroid in India. Journal of General Plant Pathology, 2009, 75, 307-311.	1.0	17
83	Molecular characterization of the Indian strain of Apple mosaic virus isolated from apple (Malus) Tj ETQq1 1 0.7	84314 rgBT 1.2	/Qyerlock
84	Molecular evidence for the presence of Apple chlorotic leaf spot virus in infected peach trees in India. Scientia Horticulturae, 2009, 120, 296-299.	3.6	5
85	Potential uses of in vitro expressed and purified recombinant <i>Prunus necrotic ringspot virus</i> coat protein gene. Archives of Phytopathology and Plant Protection, 2009, 42, 442-452.	1.3	4
86	A new chrysanthemum potyvirus: molecular evidence. Archives of Phytopathology and Plant Protection, 2009, 42, 436-441.	1.3	4
87	Identification and Characterization of Bean yellow mosaic virus Infecting Freesia. Journal of Plant Biochemistry and Biotechnology, 2009, 18, 253-255.	1.7	8
88	Recombination and phylogeographical analysis of Lily symptomless virus. Virus Genes, 2008, 36, 421-427.	1.6	18
89	Molecular characterization of a distinct bipartite begomovirus species infecting tomato in India. Virus Genes, 2008, 37, 425-431.	1.6	57
90	Complete nucleotide sequence analysis of Cymbidium mosaic virus Indian isolate: further evidence for natural recombination among potexviruses. Journal of Biosciences, 2007, 32, 663-669.	1.1	13

#	Article	IF	CITATIONS
91	Molecular cloning of Indian tomato leaf curl vims genome following a simple method of concentrating the supercoiled replicative form of viral DNA. Journal of Virological Methods, 1995, 51, 297-304.	2.1	77