
Janis Antonovics

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4879885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vector preference and heterogeneity in host sex ratio can affect pathogen spread in natural plant populations. Ecology, 2021, 102, e03246.	1.5	4
2	John Leigh, Lydia Becker and their shared botanical interests. Archives of Natural History, 2021, 48, 62-76.	0.0	1
3	From generalist to specialists: Variation in the host range and performance of antherâ€smut pathogens on <i>Dianthus</i> [*] . Evolution; International Journal of Organic Evolution, 2021, 75, 2494-2508.	1.1	6
4	Resistance Correlations Influence Infection by Foreign Pathogens. American Naturalist, 2021, 198, 206-218.	1.0	4
5	Microbial self-recycling and biospherics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2113148118.	3.3	0
6	Evolution of behavioural resistance in host–pathogen systems. Biology Letters, 2020, 16, 20200508.	1.0	5
7	Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges. New Phytologist, 2020, 227, 1610-1614.	3.5	13
8	Exploring density―and frequencyâ€dependent interactions experimentally: An r program for generating hexagonal fan designs. Methods in Ecology and Evolution, 2020, 11, 678-683.	2.2	2
9	Pathogenic Fungi in Ferns and Angiosperms: A Comparative Study. American Fern Journal, 2020, 110, 79.	0.2	4
10	Is there a diseaseâ€free halo at species range limits? The codistribution of antherâ€smut disease and its host species. Journal of Ecology, 2019, 107, 1-11.	1.9	21
11	Microbial biospherics: The experimental study of ecosystem function and evolution. Proceedings of the United States of America, 2019, 116, 11093-11098.	3.3	16
12	Sympatry and interference of divergent Microbotryum pathogen species. Ecology and Evolution, 2019, 9, 5457-5467.	0.8	9
13	The role of infectious disease in the evolution of females: Evidence from antherâ€smut disease on a gynodioecious alpine carnation*. Evolution; International Journal of Organic Evolution, 2019, 73, 497-510.	1.1	6
14	Anther smut disease caused by Microbotryum on berry campion Silene baccifera : endemic pathogen or host shift?. Plant Pathology, 2018, 67, 1850-1856.	1.2	2
15	Effect of the antherâ€smut fungus <i>Microbotryum</i> on the juvenile growth of its host <i>Silene latifolia</i> . American Journal of Botany, 2018, 105, 1088-1095.	0.8	10
16	Coâ€occurrence among three divergent plantâ€castrating fungi in the same <i>Silene</i> host species. Molecular Ecology, 2018, 27, 3357-3370.	2.0	17
17	Linnaeus, smut disease and living contagion. Archives of Natural History, 2018, 45, 213-232.	0.0	4
18	Coâ€occurrence and hybridization of antherâ€smut pathogens specialized on Dianthus hosts. Molecular Ecology, 2017, 26, 1877-1890.	2.0	28

#	Article	IF	CITATIONS
19	Transmission and temporal dynamics of antherâ€smut disease (<i>Microbotryum</i>) on alpine carnation (<i>Dianthus pavonius</i>). Journal of Ecology, 2017, 105, 1413-1424.	1.9	45
20	What is a vector?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160085.	1.8	47
21	Transmission dynamics: critical questions and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160087.	1.8	49
22	The evolution of transmission mode. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160083.	1.8	80
23	A translation of the Linnaean dissertation The Invisible World. British Journal for the History of Science, 2016, 49, 353-382.	0.1	3
24	The Value of Concept: Lessons from theÂEvolution of Antibiotic Resistance. Global Policy, 2016, 7, 97-106.	1.0	4
25	Soil microbes and community coalescence. Pedobiologia, 2016, 59, 37-40.	0.5	61
26	Rate of resistance evolution and polymorphism in long- and short-lived hosts. Evolution; International Journal of Organic Evolution, 2015, 69, 551-560.	1.1	14
27	The evolution of mutualism from reciprocal parasitism: more ecological clothes for the Prisoner's Dilemma. Evolutionary Ecology, 2015, 29, 627-641.	0.5	9
28	Interchange of entire communities: microbial community coalescence. Trends in Ecology and Evolution, 2015, 30, 470-476.	4.2	210
29	Ecological understanding of root-infecting fungi using trait-based approaches. Trends in Plant Science, 2014, 19, 432-438.	4.3	68
30	Interactive effects of root endophytes and arbuscular mycorrhizal fungi on an experimental plant community. Oecologia, 2014, 174, 263-270.	0.9	40
31	Elevational disease distribution in a natural plant–pathogen system: insights from changes across host populations and climate. Oikos, 2014, 123, 1126-1136.	1.2	19
32	THE ORIGIN OF SPECIFICITY BY MEANS OF NATURAL SELECTION: EVOLVED AND NONHOST RESISTANCE IN HOST-PATHOGEN INTERACTIONS. Evolution; International Journal of Organic Evolution, 2013, 67, 1-9.	1.1	114
33	Anthelmintic treatment alters the parasite community in a wild mouse host. Biology Letters, 2013, 9, 20130205.	1.0	79
34	Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans. PLoS ONE, 2012, 7, e29089.	1.1	16
35	Variation in resistance to multiple pathogen species: anther smuts of <i><scp>S</scp>ilene uniflora</i> . Ecology and Evolution, 2012, 2, 2304-2314.	0.8	26
36	Local transmission processes and disease-driven host extinctions. Theoretical Ecology, 2012, 5, 211-217.	0.4	18

#	Article	IF	CITATIONS
37	Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology. Journal of Ecology, 2012, 100, 88-103.	1.9	100
38	TWO-STEP INFECTION PROCESSES CAN LEAD TO COEVOLUTION BETWEEN FUNCTIONALLY INDEPENDENT INFECTION AND RESISTANCE PATHWAYS. Evolution; International Journal of Organic Evolution, 2012, 66, 2030-2041.	1.1	57
39	2010 American Society of Naturalists Awards. American Naturalist, 2011, 177, iii-iv.	1.0	0
40	Spatio-temporal dynamics of bumblebee nest parasites (<i>Bombus</i> subgenus <i>Psythirus</i> ssp.) and their hosts (<i>Bombus</i> spp.). Journal of Animal Ecology, 2011, 80, 999-1011.	1.3	23
41	Dioecy, hermaphrodites and pathogen load in plants. Oikos, 2011, 120, 657-660.	1.2	12
42	PARTIAL RESISTANCE IN THE LINUM-MELAMPSORA HOST-PATHOGEN SYSTEM: DOES PARTIAL RESISTANCE MAKE THE RED QUEEN RUN SLOWER?. Evolution; International Journal of Organic Evolution, 2011, 65, 512-522.	1.1	29
43	Biology and evolution of sexual transmission. Annals of the New York Academy of Sciences, 2011, 1230, 12-24.	1.8	30
44	Distribution of the antherâ€smut pathogen <i>Microbotryum</i> on species of the Caryophyllaceae. New Phytologist, 2010, 187, 217-229.	3.5	73
45	The Evolution of Hostâ€Parasite Range. American Naturalist, 2010, 176, 63-71.	1.0	68
46	The effect of sterilizing diseases on host abundance and distribution along environmental gradients. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1443-1448.	1.2	38
47	Parasite–grass–forb interactions and rock–paper– scissor dynamics: predicting the effects of the parasitic plant <i>Rhinanthus minor</i> on host plant communities. Journal of Ecology, 2009, 97, 1311-1319.	1.9	90
48	Silene as a model system in ecology and evolution. Heredity, 2009, 103, 5-14.	1.2	203
49	Inverseâ€Geneâ€forâ€Gene Infection Genetics and Coevolutionary Dynamics. American Naturalist, 2009, 174, E230-E242.	1.0	75
50	Predicting local colonization and extinction dynamics from coarserâ€scale surveys. Ecography, 2008, 31, 61-72.	2.1	13
51	Spatial and Temporal Heterogeneity Explain Disease Dynamics in a Spatially Explicit Network Model. American Naturalist, 2008, 172, 149-159.	1.0	61
52	Evolution by Any Other Name: Antibiotic Resistance and Avoidance of the E-Word. PLoS Biology, 2007, 5, e30.	2.6	52
53	Disease transmission by cannibalism: rare event or common occurrence?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1205-1210.	1.2	72
54	Tissue Culture and Quantification of Individualâ€Level Resistance toÂAntherâ€&mut Disease in Silene vulgaris. International Journal of Plant Sciences, 2007, 168, 415-419.	0.6	15

#	Article	IF	CITATIONS
55	Was the 1918 flu avian in origin?. Nature, 2006, 440, E9-E9.	13.7	54
56	Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation at a mine boundary. Heredity, 2006, 97, 33-37.	1.2	140
57	Spatiotemporal Dynamics in Marginal Populations. American Naturalist, 2006, 167, 16-27.	1.0	39
58	Plant venereal diseases: insights from a messy metaphor. New Phytologist, 2005, 165, 71-80.	3.5	55
59	THE EVOLUTION OF INTRATETRAD MATING RATES. Evolution; International Journal of Organic Evolution, 2005, 59, 2525-2532.	1.1	20
60	Species Coexistence and Pathogens with Frequencyâ€Đependent Transmission. American Naturalist, 2005, 166, 112-118.	1.0	149
61	Fitness Costs of Mutations Affecting the Systemic Acquired Resistance Pathway in Arabidopsis thaliana. Genetics, 2004, 168, 2197-2206.	1.2	165
62	Population Dynamics with Global Regulation: The Conserved Fisher Equation. Physical Review Letters, 2004, 92, 228103.	2.9	12
63	Shared Forces of Sex Chromosome Evolution in Haploid-Mating and Diploid-Mating OrganismsSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under the accession nos. BZ81929 and BZ782612 Genetics, 2004, 168, 141-146.	1.2	63
64	Long-Term Study of a Plant-Pathogen Metapopulation. , 2004, , 471-488.		42
65	INTRATETRAD MATING AND THE EVOLUTION OF LINKAGE RELATIONSHIPS. Evolution; International Journal of Organic Evolution, 2004, 58, 702-709.	1.1	36
66	Mating Within the Meiotic Tetrad and the Maintenance of Genomic Heterozygosity. Genetics, 2004, 166, 1751-1759.	1.2	21
67	Karyotypic similarity identifies multiple host-shifts of a pathogenic fungus in natural populations. Infection, Genetics and Evolution, 2003, 2, 167-172.	1.0	30
68	TOWARD COMMUNITY GENOMICS?. Ecology, 2003, 84, 598-601.	1.5	67
69	Social Organization and Parasite Risk in Mammals: Integrating Theory and Empirical Studies. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 517-547.	3.8	625
70	Herbarium studies on the distribution of antherâ€smut fungus (<i>Microbotryum violaceum</i>) and <i>Silene</i> species (Caryophyllaceae) in the eastern United States. American Journal of Botany, 2003, 90, 1522-1531.	0.8	57
71	Plant species descriptions show signs of disease. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S156-8.	1.2	13
72	Playing by Different Rules: The Evolution of Virulence in Sterilizing Pathogens. American Naturalist, 2002, 159, 597-605.	1.0	123

#	Article	IF	CITATIONS
73	Population Dynamics with a Refuge: Fractal Basins and the Suppression of Chaos. Theoretical Population Biology, 2002, 62, 121-128.	0.5	15
74	The Ecology and Genetics of a Host Shift:Microbotryumas a Model System. American Naturalist, 2002, 160, S40-S53.	1.0	123
75	NEGATIVE FREQUENCY DEPENDENCE AND THE IMPORTANCE OF SPATIAL SCALE. Ecology, 2002, 83, 21-27.	1.5	51
76	NEGATIVE FREQUENCY DEPENDENCE AND THE IMPORTANCE OF SPATIAL SCALE. , 2002, 83, 21.		1
77	Differences in teliospore germination patterns of Microbotryum violaceum from European and North American Silene species. Mycological Research, 2001, 105, 532-536.	2.5	9
78	Coexistence under positive frequency dependence. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 273-277.	1.2	63
79	Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbotryum violaceum (=Ustilago violacea). Heredity, 2000, 85, 231-241.	1.2	90
80	Is atmospheric CO 2 a selective agent on model C 3 annuals?. Oecologia, 2000, 123, 330-341.	0.9	140
81	Correlation between male and female reproduction in the subdioecious herb Astilbe biternata (Saxifragaceae). American Journal of Botany, 2000, 87, 837-844.	0.8	24
82	Sexually transmitted diseases in polygynous mating systems: prevalence and impact on reproductive success. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1555-1563.	1.2	147
83	Promiscuity and the Primate Immune System. Science, 2000, 290, 1168-1170.	6.0	227
84	Correlation between male and female reproduction in the subdioecious herb Astilbe biternata (Saxifragaceae). American Journal of Botany, 2000, 87, 837-44.	0.8	2
85	Use of Internal Transcribed Spacer Primers and Fungicide Treatments to Study the Antherâ€Smut Disease, Microbotryum violaceum (=Ustilago violacea), of White Campion Silene alba (=Silene) Tj ETQq1 1 0.784	43104.orgBT	∕O⊽erlock 10
86	Vector Behavior and the Transmission of Anther-smut Infection in Silene alba. American Midland Naturalist, 1998, 139, 147-163.	0.2	59
87	Allocation to Sexual versus Nonsexual Disease Transmission. American Naturalist, 1998, 151, 29-45.	1.0	43
88	The Distribution of Mating-Type Bias in Natural Populations of the Anther-Smut Ustilago violacea on Silene alba in Virginia. Mycologia, 1998, 90, 372.	0.8	29
89	Theoretical Population Genetics of Mating-Type Linked Haplo-Lethal Alleles. International Journal of Plant Sciences, 1998, 159, 192-198.	0.6	26
90	Two-Celled Promycelia and Mating-Type Segregation in Ustilago violacea (Microbotryum violaceum). International Journal of Plant Sciences, 1998, 159, 199-205.	0.6	42

#	Article	IF	CITATIONS
91	The distribution of mating-type bias in natural populations of the anther-smut <i>Ustilago violacea</i> on <i>Silene alba</i> in Virginia. Mycologia, 1998, 90, 372-381.	0.8	38
92	Emerging and Reemerging Infectious Diseases: A Multidisciplinary Perspective. American Journal of the Medical Sciences, 1998, 315, 64-75.	0.4	26
93	Sexual Transmission of Disease and Host Mating Systems: Within-Season Reproductive Success. American Naturalist, 1997, 149, 485-506.	1.0	101
94	Incorporating the Soil Community into Plant Population Dynamics: The Utility of the Feedback Approach. Journal of Ecology, 1997, 85, 561.	1.9	929
95	Polymorphism in sexual versus non-sexual disease transmission. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 581-587.	1.2	41
96	SEXUALLY TRANSMITTED DISEASES IN ANIMALS: ECOLOGICAL AND EVOLUTIONARY IMPLICATIONS. Biological Reviews, 1996, 71, 415-471.	4.7	256
97	Population Dynamics and Genetics of Plant Disease: A Case Study of Anther- Smut Disease. Ecology, 1996, 77, 990-996.	1.5	92
98	SEX‧PECIFIC COSTS OF RESISTANCE TO THE FUNGAL PATHOGEN <i>USTILAGO VIOLACEA</i> () Tj ETQq0 0 (Evolution, 1996, 50, 1098-1110.) rgBT /Ov 1.1	erlock 10 Tf 5 100
99	A population genetic analysis of chloroplast DNA in Phacelia. Heredity, 1996, 76, 143-155.	1.2	26
100	Host-Dependent Sporulation and Species Diversity of Arbuscular Mycorrhizal Fungi in a Mown Grassland. Journal of Ecology, 1996, 84, 71.	1.9	472
101	Sex-Specific Costs of Resistance to the Fungal Pathogen Ustilago violacea (Microbotryum violaceum) in Silene alba. Evolution; International Journal of Organic Evolution, 1996, 50, 1098.	1.1	75
102	A Generalized Model of Parasitoid, Venereal, and Vector-Based Transmission Processes. American Naturalist, 1995, 145, 661-675.	1.0	156
103	Local founding events as determinants of genetic structure in a plant metapopulation. Heredity, 1995, 75, 630-636.	1.2	137
104	Theoretical and empirical studies of metapopulations: population and genetic dynamics of the <i>Silene</i> – <i>Ustilago</i> system. Canadian Journal of Botany, 1995, 73, 1249-1258.	1.2	98
105	Spread of Anther-Smut Disease (Ustilago Violacea) and Character Correlations in a Genetically Variable Experimental Population of Silene Alba. Journal of Ecology, 1995, 83, 783.	1.9	86
106	Sober on Brandon on Screening-Off and the Levels of Selection. Philosophy of Science, 1994, 61, 475-486.	0.5	18
107	Plant Life-History and Disease SusceptibilityThe Occurrence of Ustilago Violacea on Different Species within the Caryophyllaceae. Journal of Ecology, 1993, 81, 489.	1.9	144
108	Genotypic Variation in Plant Disease ResistancePhysiological Resistance in Relation to Field Disease Transmission. Journal of Ecology, 1993, 81, 325.	1.9	76

#	Article	IF	CITATIONS
109	Host and Pathogen Coexistence in Sexually Transmitted and Vector-Borne Diseases Characterized by Frequency-Dependent Disease Transmission. American Naturalist, 1993, 142, 543-552.	1.0	118
110	DETERMINANTS OF OUTCROSSING RATE IN A PREDOMINANTLY SELFâ€FERTILIZING WEED, DATURA STRAMONIUM (SOLANACEAE). American Journal of Botany, 1992, 79, 419-427.	0.8	91
111	DETERMINANTS OF OUTCROSSING RATE IN A PREDOMINANTLY SELF-FERTILIZING WEED, DATURA STRAMONIUM (SOLANACEAE). , 1992, 79, 419.		48
112	Ontoecogenophyloconstraints? The chaos of constraint terminology. Trends in Ecology and Evolution, 1991, 6, 166-168.	4.2	123
113	BREEDING SYSTEM EVOLUTION IN LEAVENWORTHIA: BREEDING SYSTEM VARIATION AND REPRODUCTIVE SUCCESS IN NATURAL POPULATIONS OF LEAVENWORTHIA CRASSA (CRUCIFERAE). American Journal of Botany, 1991, 78, 270-287.	0.8	42
114	BREEDING SYSTEM EVOLUTION IN LEAVENWORTHIA: BREEDING SYSTEM VARIATION AND REPRODUCTIVE SUCCESS IN NATURAL POPULATIONS OF LEAVENWORTHIA CRASSA (CRUCIFERAE). , 1991, 78, 270.		19
115	Wilhelm Ludwig and his contributions to population genetics. Trends in Ecology and Evolution, 1990, 5, 87-90.	4.2	2
116	Temporal mechanisms influencing gender expression and pollen flow within a self-incompatible perennial, Amianthium muscaetoxicum (Liliaceae). Oecologia, 1989, 78, 231-236.	0.9	25
117	Sexual advantage. Nature, 1989, 337, 413-414.	13.7	3
118	Sources of Variation in Plant Reproductive Success and Implications for Concepts of Sexual Selection. American Naturalist, 1989, 134, 409-433.	1.0	129
119	Seasonal pollen flow and progeny diversity in Amianthium muscaetoxicum: ecological potential for multiple mating in a self-incompatible, hermaphroditic perennial. Oecologia, 1988, 77, 19-24.	0.9	20
120	A test of the short-term advantage of sexual reproduction. Nature, 1988, 331, 714-716.	13.7	87
121	Disease Spread and Population Dynamics of Anther-Smut Infection of Silene Alba Caused by the Fungus Ustilago Violacea. Journal of Ecology, 1988, 76, 91.	1.9	188
122	Frequency-dependent selection and competition: empirical approaches. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1988, 319, 601-613.	2.4	39
123	Growth performance of triazine-resistant and -susceptible biotypes of Solanum nigrum over a range of temperatures. Canadian Journal of Botany, 1988, 66, 847-850.	1.2	27
124	The Evolutionary Dys-Synthesis: Which Bottles for Which Wine?. American Naturalist, 1987, 129, 321-331.	1.0	45
125	INTER―AND INTRASPECIFIC VARIATION OF MOSSES IN TOLERANCE TO COPPER AND ZINC. Evolution; International Journal of Organic Evolution, 1987, 41, 1312-1325.	1.1	42
126	The measurement of small-scale environmental heterogeneity using clonal transplants of Anthoxanthum odoratum and Danthonia spicata. Oecologia, 1987, 71, 601-607.	0.9	90

#	Article	IF	CITATIONS
127	THE DYNAMICS OF AN EXPERIMENTAL POPULATION OF SALVIA LYRATA: THE POPULATION CAGE APPROACH APPLIED TO PLANTS. New Phytologist, 1987, 107, 415-426.	3.5	3
128	Density-Dependence in Salvia Lyrata, A Herbaceous Perennial: The Effects of Experimental Alteration of Seed Densities. Journal of Ecology, 1986, 74, 797.	1.9	41
129	IS male-sterility in plants related to lack of cyanide-resistant respiration in tissues?. Plant Science, 1986, 44, 7-11.	1.7	36
130	EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. IV. EFFECT OF NEIGHBOR RELATEDNESS AND APHID INFESTATION ON SEEDLING PERFORMANCE. Evolution; International Journal of Organic Evolution, 1986, 40, 830-836.	1.1	110
131	EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. III. MATERNAL AND PATERNAL EFFECTS DURING SEEDLING ESTABLISHMENT. Evolution; International Journal of Organic Evolution, 1986, 40, 817-829.	1.1	85
132	Paternal and maternal effects on propagule size in Anthoxanthum odoratum. Oecologia, 1986, 69, 277-282.	0.9	109
133	EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION II. A TEST OF THE DENSITYâ€DEPENDENT SELECTION HYPOTHESIS. Evolution; International Journal of Organic Evolution, 1985, 39, 657-666.	1.1	103
134	DEMOGRAPHIC GENETICS OF THE GRASS <i>DANTHONIA SPICATA</i> : SUCCESS OF PROGENY FROM CHASMOGAMOUS AND CLEISTOGAMOUS FLOWERS. Evolution; International Journal of Organic Evolution, 1985, 39, 205-210.	1.1	18
135	QUANTITATIVE VARIATION OF PROGENY FROM CHASMOGAMOUS AND CLEISTOGAMOUS FLOWERS IN THE GRASS <i>DANTHONIA SPICATA</i> . Evolution; International Journal of Organic Evolution, 1985, 39, 335-348.	1.1	31
136	Evolution for Ecologists. Ecology, 1985, 66, 638-638.	1.5	0
136 137	Evolution for Ecologists. Ecology, 1985, 66, 638-638. Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans. Oecologia, 1984, 65, 89-93.	1.5 0.9	0 29
	Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium		
137	Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans. Oecologia, 1984, 65, 89-93. EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. I. A TEST OF THE FREQUENCYâ€DEPENDENT SELECTION HYPOTHESIS. Evolution; International Journal of Organic Evolution,	0.9	29
137 138	Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans. Oecologia, 1984, 65, 89-93. EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. I. A TEST OF THE FREQUENCYa€DEPENDENT SELECTION HYPOTHESIS. Evolution; International Journal of Organic Evolution, 1984, 38, 103-115. Experimental Ecological Genetics in Plantago: A Structural Equation Approach to Fitness Components	0.9	29 183
137 138 139	Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans. Oecologia, 1984, 65, 89-93. EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. I. A TEST OF THE FREQUENCYâ€DEPENDENT SELECTION HYPOTHESIS. Evolution; International Journal of Organic Evolution, 1984, 38, 103-115. Experimental Ecological Genetics in Plantago: A Structural Equation Approach to Fitness Components in P. Aristata and P. Patagonica. Ecology, 1983, 64, 1092-1099.	0.9 1.1 1.5	29 183 38
137 138 139 140	Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans. Oecologia, 1984, 65, 89-93. EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. I. A TEST OF THE FREQUENCYâ€DEPENDENT SELECTION HYPOTHESIS. Evolution; International Journal of Organic Evolution, 1984, 38, 103-115. Experimental Ecological Genetics in Plantago: A Structural Equation Approach to Fitness Components in P. Aristata and P. Patagonica. Ecology, 1983, 64, 1092-1099. Variance Models in the Study of Life Histories. American Naturalist, 1983, 122, 114-131. EXPERIMENTAL ECOLOGICAL GENETICS IN <>PLANTAGO	0.9 1.1 1.5 1.0	29 183 38 88
137 138 139 140 141	Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans. Oecologia, 1984, 65, 89-93. EXPERIMENTAL STUDIES OF THE EVOLUTIONARY SIGNIFICANCE OF SEXUAL REPRODUCTION. I. A TEST OF THE FREQUENCYá€DEPENDENT SELECTION HYPOTHESIS. Evolution; International Journal of Organic Evolution, 1984, 38, 103-115. Experimental Ecological Genetics in Plantago: A Structural Equation Approach to Fitness Components in P. Aristata and P. Patagonica. Ecology, 1983, 64, 1092-1099. Variance Models in the Study of Life Histories. American Naturalist, 1983, 122, 114-131. EXPERIMENTAL ECOLOGICAL GENETICS IN <i>PLANTAGO</i> OF <i>P. LANCEOLATA</i> L. Evolution; International Journal of Organic Evolutions OF <i>P. LANCEOLATA Analysis of interspecific interactions in a coastal plant communityâ€"a perturbation approach. Nature,</i>	0.9 1.1 1.5 1.0 1.1	29 183 38 88 67

#	Article	IF	CITATIONS
145	BUTTERFLYWEED REâ€REVISITED: SPATIAL AND TEMPORAL PATTERNS OF LEAF SHAPE VARIATION IN <i>ASCLEPIAS TUBEROSA</i> . Evolution; International Journal of Organic Evolution, 1981, 35, 529-542.	1.1	38
146	EXPERIMENTAL ECOLOGICAL GENETICS IN PLANTAGO . V. COMPONENTS OF SEED YIELD IN THE RIBWORT PLANTAIN PLANTAGO LANCEOLATA L Evolution; International Journal of Organic Evolution, 1981, 35, 1069-1079.	1.1	90
147	Small-Scale Variability in the Demography of Transplants of Two Herbaceous Species. Ecology, 1981, 62, 1450-1457.	1.5	67
148	EXPERIMENTAL ECOLOGICAL GENETICS IN PLANTAGO IV. EFFECTS OF TEMPERATURE ON GROWTH RATES AND REPRODUCTION IN THREE POPULATIONS OF PLANTAGO LANCEOLATA L. (PLANTAGINACEAE). , 1981, 68, 425.		11
149	The Study of Plant Populations. Science, 1980, 208, 587-589.	6.0	8
150	The Ecological and Genetic Consequences of Density-Dependent Regulation in Plants. Annual Review of Ecology, Evolution, and Systematics, 1980, 11, 411-452.	6.7	420
151	Evolution in closely adjacent plant populations. Heredity, 1978, 40, 371-384.	1.2	188
152	Experimental ecological genetics in Plantago. III. Genetic variation and demography in relation to survival of Plantago cordata, a rare species. Biological Conservation, 1978, 14, 243-257.	1.9	54
153	ZINC AND COPPER TOLERANCE OF AGROSTIS STOLONIFERA L. IN TISSUE CULTURE. American Journal of Botany, 1978, 65, 268-271.	0.8	28
154	ZINC AND COPPER TOLERANCE OF AGROSTIS STOLONIFERA L. IN TISSUE CULTURE. , 1978, 65, 268.		30
155	Adaptation to heterogeneous environments. III.* The inheritance of response to spacing in flax and linseed (Linum usitatissimum). Australian Journal of Agricultural Research, 1976, 27, 649.	1.5	41
156	The Nature of Limits to Natural Selection. Annals of the Missouri Botanical Garden, 1976, 63, 224.	1.3	345
157	Experimental Ecological Genetics in Plantago II. Lead Tolerance in Plantago Lanceolata and Cynodon Dactylon from a Roadside. Ecology, 1976, 57, 205-208.	1.5	95
158	Proton-induced X-ray emission analysis -a promising technique for studying the metal content of plants and soils. Radiation and Environmental Biophysics, 1975, 12, 175-180.	0.6	5
159	EXPERIMENTAL ECOLOGICAL GENETICS IN PLANTAGO. I. INDUCTION OF ROOTS AND SHOOTS ON LEAVES FOR LARGE SCALE VEGETATIVE PROPAGATION AND METAL TOLERANCE TESTING IN P. LANCEOLATA. New Phytologist, 1975, 75, 277-282.	3.5	68
160	ZINC AND COPPER UPTAKE BY AGROSTIS STOLONIFERA, TOLERANT TO BOTH ZINC AND COPPER. New Phytologist, 1975, 75, 231-237.	3.5	77
161	Experimental evidence on the frequency of neutral mutations. Journal of Heredity, 1974, 65, 241-242.	1.0	1
162	Theoretical Considerations of Sympatric Divergence. American Naturalist, 1973, 107, 256-274.	1.0	145

#	ARTICLE	IF	CITATIONS
163	THE EFFECTS OF ENVIRONMENTAL HETEROGENEITY ON THE GENETICS OF FINITE POPULATIONS. Genetics, 1973, 73, 713-735.	1.2	8
164	Population Dynamics of the Grass Anthoxanthum Odoratum on a Zinc Mine. Journal of Ecology, 1972, 60, 351.	1.9	84
165	The effects of simultaneous disruptive and stabilising selection. Heredity, 1972, 29, 363-365.	1.2	2
166	Criteria for the Validation or Invalidation of the Competitive Exclusion Principle. Nature, 1972, 237, 406-408.	13.7	9
167	Heavy Metal Tolerance in Plants. Advances in Ecological Research, 1971, 7, 1-85.	1.4	804
168	The effects of a heterogeneous environment on the genetics of natural populations. American Scientist, 1971, 59, 593-9.	0.1	41
169	Evolution in closely adjacent plant populations VIII. Clinal patterns at a mine boundary. Heredity, 1970, 25, 349-362.	1.2	355
170	Evolution in closely adjacent plant populations IV. Barriers to gene flow. Heredity, 1968, 23, 205-218.	1.2	250
171	Evolution in closely adjacent plant populations V. Evolution of self-fertility. Heredity, 1968, 23, 219-238.	1.2	318
172	Evolution in closely adjacent plant populations VI. Manifold effects of gene flow. Heredity, 1968, 23, 508-524.	1.2	51
173	Population inter-relationships I. Evolution in mixtures of Drosophila mutants. Heredity, 1967, 22, 19-33.	1.2	87