Tamara E C Kraus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4879242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography, 2016, 61, 1015-1032.	1.6	622
2	Tannins in nutrient dynamics of forest ecosystems - a review. Plant and Soil, 2003, 256, 41-66.	1.8	591
3	Diurnal variability in riverine dissolved organic matter composition determined by <i>in situ</i> optical measurement in the San Joaquin River (California, USA). Hydrological Processes, 2007, 21, 3181-3189.	1.1	156
4	Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. Journal of Chemical Ecology, 2003, 29, 703-730.	0.9	141
5	Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biology and Biochemistry, 2004, 36, 309-321.	4.2	137
6	Seeing the light: The effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams. Limnology and Oceanography: Methods, 2012, 10, 767-775.	1.0	135
7	Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Organic Geochemistry, 2012, 48, 81-89.	0.9	134
8	Environmental and economic effects of reducing pesticide use in agriculture. Agriculture, Ecosystems and Environment, 1993, 46, 273-288.	2.5	108
9	Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Science of the Total Environment, 2011, 409, 631-637.	3.9	105
10	Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an <i>in situ</i> optical nitrate sensor and dual nitrate isotopes. Freshwater Biology, 2009, 54, 376-387.	1.2	83
11	Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter. Science of the Total Environment, 2014, 484, 263-275.	3.9	71
12	Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento–San Joaquin River Delta: A geochemical approach. Organic Geochemistry, 2008, 39, 1302-1318.	0.9	59
13	Determining Sources of Dissolved Organic Carbon and Disinfection Byproduct Precursors to the McKenzie River, Oregon. Journal of Environmental Quality, 2010, 39, 2100-2112.	1.0	45
14	Spatial variability of phytoplankton in a shallow tidal freshwater system reveals complex controls on abundance and community structure. Science of the Total Environment, 2020, 700, 134392.	3.9	37
15	Mineral and Dissolved Organic Nitrogen Dynamics along a Soil Acidity-Fertility Gradient. Soil Science Society of America Journal, 2003, 67, 878.	1.2	28
16	Using Continuous Underway Isotope Measurements To Map Water Residence Time in Hydrodynamically Complex Tidal Environments. Environmental Science & Technology, 2016, 50, 13387-13396.	4.6	27
17	Aluminum- and iron-based coagulation for in-situ removal of dissolved organic carbon, disinfection byproducts, mercury and other constituents from agricultural drain water. Ecological Engineering, 2019, 134, 26-38.	1.6	27
18	Effects of ferric sulfate and polyaluminum chloride coagulation enhanced treatment wetlands on Typha growth, soil and water chemistry. Science of the Total Environment, 2019, 648, 116-124.	3.9	21

TAMARA E C KRAUS

#	Article	IF	CITATIONS
19	Experimental Dosing of Wetlands with Coagulants Removes Mercury from Surface Water and Decreases Mercury Bioaccumulation in Fish. Environmental Science & Technology, 2015, 49, 6304-6311.	4.6	20
20	Wetlands receiving water treated with coagulants improve water quality by removing dissolved organic carbon and disinfection byproduct precursors. Science of the Total Environment, 2018, 622-623, 603-613.	3.9	20
21	Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants. Ecological Engineering, 2018, 111, 176-185.	1.6	19
22	Using Paired In Situ High Frequency Nitrate Measurements to Better Understand Controls on Nitrate Concentrations and Estimate Nitrification Rates in a Wastewaterâ€Impacted River. Water Resources Research, 2017, 53, 8423-8442.	1.7	18
23	A riverâ€scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium. Limnology and Oceanography, 2017, 62, 1234-1253.	1.6	16
24	Mercury sequestration and transformation in chemically enhanced treatment wetlands. Chemosphere, 2019, 217, 496-506.	4.2	8
25	Investigating the Temporal Effects of Metal-Based Coagulants to Remove Mercury from Solution in the Presence of Dissolved Organic Matter. Environmental Management, 2016, 57, 220-228.	1.2	7
26	Use of flow cytometry and stable isotope analysis to determine phytoplankton uptake of wastewater derived ammonium in a nutrient-rich river. Biogeosciences, 2018, 15, 353-367.	1.3	7
27	Ocean connectivity drives trophic support for consumers in an intermittently closed coastal lagoon. Estuarine, Coastal and Shelf Science, 2022, 264, 107665.	0.9	4
28	Sequestration and Transformation in Chemically Enhanced Treatment Wetlands: DOC, DBPPs, and Nutrients. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	3
29	Trihalomethane precursors: Land use hot spots, persistence during transport, and management options. Science of the Total Environment, 2020, 742, 140571.	3.9	3
30	Chemically Enhanced Treatment Wetland to Improve Water Quality and Mitigate Land Subsidence in the Sacramento‒SanÂJoaquin Delta: Cost and Design Considerations. San Francisco Estuary and Watershed Science, 2019, 17, .	0.2	2
31	Lateral Carbon Exports From Drained Peatlands: An Understudied Carbon Pathway in the Sacramentoâ€6an Joaquin Delta, California. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005883.	1.3	1
32	Stable isotopes provide insight into sources and cycling of N compounds in the Sacramento-San Joaquin Delta, California, USA. Science of the Total Environment, 2022, 816, 151592.	3.9	1