Jan E Carette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4879215/publications.pdf

Version: 2024-02-01

95 papers 9,954 citations

50566 48 h-index 93 g-index

109 all docs

109 docs citations

109 times ranked 18395 citing authors

#	Article	IF	CITATIONS
1	Loquacious modulates flaviviral RNA replication in mosquito cells. PLoS Pathogens, 2022, 18, e1010163.	2.1	3
2	Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell, 2021, 184, 106-119.e14.	13.5	320
3	Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses, 2021, 13, 166.	1.5	8
4	Improved Genome Editing through Inhibition of FANCM and Members of the BTR Dissolvase Complex. Molecular Therapy, 2021, 29, 1016-1027.	3.7	7
5	Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021, 184, 2394-2411.e16.	13.5	141
6	Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell, 2021, 184, 3109-3124.e22.	13.5	260
7	Inhibitor of growth protein 3 epigenetically silences endogenous retroviral elements and prevents innate immune activation. Nucleic Acids Research, 2021, 49, 12706-12715.	6.5	4
8	Lipid droplets can promote drug accumulation and activation. Nature Chemical Biology, 2020, 16, 206-213.	3.9	45
9	GPR108 Is a Highly Conserved AAV Entry Factor. Molecular Therapy, 2020, 28, 367-381.	3.7	77
10	Necroptosis-based CRISPR knockout screen reveals Neuropilin-1 as a critical host factor for early stages of murine cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20109-20116.	3.3	25
11	<i>ATRAID</i> regulates the action of nitrogen-containing bisphosphonates on bone. Science Translational Medicine, 2020, 12, .	5.8	15
12	A memory of eS25 loss drives resistance phenotypes. Nucleic Acids Research, 2020, 48, 7279-7297.	6.5	4
13	Conserved Oligomeric Golgi (COG) Complex Proteins Facilitate Orthopoxvirus Entry, Fusion and Spread. Viruses, 2020, 12, 707.	1.5	16
14	Structural and cellular biology of adeno-associated virus attachment and entry. Advances in Virus Research, 2020, 106, 39-84.	0.9	20
15	Enhancing the Antiviral Efficacy of RNA-Dependent RNA Polymerase Inhibition by Combination with Modulators of Pyrimidine Metabolism. Cell Chemical Biology, 2020, 27, 668-677.e9.	2.5	23
16	R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. ELife, 2020, 9, .	2.8	37
17	Cracking the cell access code for the deadly virus VEEV. Nature, 2020, 588, 223-224.	13.7	O
18	Identification of the Cell-Surface Protease ADAM9 as an Entry Factor for Encephalomyocarditis Virus. MBio, 2019, 10, .	1.8	15

#	Article	IF	CITATIONS
19	Capsid Engineering Overcomes Barriers Toward Adeno-Associated Virus Vector-Mediated Transduction of Endothelial Cells. Human Gene Therapy, 2019, 30, 1284-1296.	1.4	23
20	GluA4-Targeted AAV Vectors Deliver Genes Selectively to Interneurons while Relying on the AAV Receptor for Entry. Molecular Therapy - Methods and Clinical Development, 2019, 14, 252-260.	1.8	17
21	An RNA-centric dissection of host complexes controlling flavivirus infection. Nature Microbiology, 2019, 4, 2369-2382.	5.9	79
22	A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity. Cell Reports, 2019, 26, 1544-1556.e8.	2.9	146
23	Impact of a patient-derived hepatitis C viral RNA genome with a mutated microRNA binding site. PLoS Pathogens, 2019, 15, e1007467.	2.1	13
24	Direct Activation of Human MLKL by a Select Repertoire of Inositol Phosphate Metabolites. Cell Chemical Biology, 2019, 26, 863-877.e7.	2.5	38
25	Discovery of gene regulatory elements through a new bioinformatics analysis of haploid genetic screens. PLoS ONE, 2019, 14, e0198463.	1.1	0
26	Enterovirus pathogenesis requires the host methyltransferase SETD3. Nature Microbiology, 2019, 4, 2523-2537.	5.9	51
27	Differential and convergent utilization of autophagy components by positive-strand RNA viruses. PLoS Biology, 2019, 17, e2006926.	2.6	71
28	SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature, 2019, 565, 372-376.	13.7	116
29	KREMEN1 Is a Host Entry Receptor for a Major Group of Enteroviruses. Cell Host and Microbe, 2018, 23, 636-643.e5.	5.1	69
30	STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nature Communications, 2018, 9, 1485.	5.8	68
31	RNA–protein interaction detection in living cells. Nature Methods, 2018, 15, 207-212.	9.0	234
32	An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. Journal of Virology, 2018, 92, .	1.5	77
33	A Dock-and-Lock Mechanism Clusters ADAM10 at Cell-Cell Junctions to Promote α-Toxin Cytotoxicity. Cell Reports, 2018, 25, 2132-2147.e7.	2.9	40
34	Honey bee Royalactin unlocks conserved pluripotency pathway in mammals. Nature Communications, 2018, 9, 5078.	5.8	22
35	Editing N-Glycan Site Occupancy with Small-Molecule Oligosaccharyltransferase Inhibitors. Cell Chemical Biology, 2018, 25, 1231-1241.e4.	2.5	31
36	Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host defense against HSV1. Cell Death and Disease, 2018, 9, 816.	2.7	88

#	Article	IF	Citations
37	MLKL Requires the Inositol Phosphate Code to Execute Necroptosis. Molecular Cell, 2018, 70, 936-948.e7.	4.5	111
38	PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature, 2017, 541, 412-416.	13.7	168
39	A CRISPR toolbox to study virus–host interactions. Nature Reviews Microbiology, 2017, 15, 351-364.	13.6	147
40	Monkeypox Virus Host Factor Screen Using Haploid Cells Identifies Essential Role of GARP Complex in Extracellular Virus Formation. Journal of Virology, 2017, 91, .	1.5	54
41	Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature, 2017, 543, 723-727.	13.7	232
42	DDX6 Represses Aberrant Activation of Interferon-Stimulated Genes. Cell Reports, 2017, 20, 819-831.	2.9	54
43	Host determinants of adeno-associated viral vector entry. Current Opinion in Virology, 2017, 24, 124-131.	2.6	67
44	Adeno-associated Virus (AAV) Serotypes Have Distinctive Interactions with Domains of the Cellular AAV Receptor. Journal of Virology, 2017, 91, .	1.5	119
45	A Small-Molecule Oligosaccharyltransferase Inhibitor with Pan-flaviviral Activity. Cell Reports, 2017, 21, 3032-3039.	2.9	65
46	A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles. MSphere, 2016, 1 , .	1.3	25
47	Complement pathway amplifies caspase-11–dependent cell death and endotoxin-induced sepsis severity. Journal of Experimental Medicine, 2016, 213, 2365-2382.	4.2	120
48	Chromatin-Remodeling Complex SWI/SNF Controls Multidrug Resistance by Transcriptionally Regulating the Drug Efflux Pump ABCB1. Cancer Research, 2016, 76, 5810-5821.	0.4	32
49	Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature, 2016, 535, 159-163.	13.7	360
50	Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nature Chemical Biology, 2016, 12, 361-366.	3.9	157
51	Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling. ELife, 2016, 5, .	2.8	49
52	Hunting Viral Receptors Using Haploid Cells. Annual Review of Virology, 2015, 2, 219-239.	3.0	19
53	Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genomics, 2015, 16, 121.	1.2	51
54	The adherens junctions control susceptibility to <i>Staphylococcus aureus</i> α-toxin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14337-14342.	3.3	68

#	Article	IF	Citations
55	Gene essentiality and synthetic lethality in haploid human cells. Science, 2015, 350, 1092-1096.	6.0	773
56	Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 319-325.	3.3	46
57	Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. ELife, 2015, 4, .	2.8	67
58	A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells. ELife, $2015, 4, .$	2.8	36
59	RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity. Molecular Cell, 2014, 56, 481-495.	4.5	470
60	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform. Circulation Research, 2014, 115, 556-566.	2.0	134
61	GPR107, a G-protein-coupled Receptor Essential for Intoxication by Pseudomonas aeruginosa Exotoxin A, Localizes to the Golgi and Is Cleaved by Furin. Journal of Biological Chemistry, 2014, 289, 24005-24018.	1.6	54
62	Inhibition of ATPIF1 Ameliorates Severe Mitochondrial Respiratory Chain Dysfunction in Mammalian Cells. Cell Reports, 2014, 7, 27-34.	2.9	62
63	A CREB3–ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nature Cell Biology, 2013, 15, 1473-1485.	4.6	135
64	MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nature Genetics, 2013, 45, 104-108.	9.4	204
65	Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry. Science, 2013, 340, 479-483.	6.0	262
66	Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L. Journal of Cell Science, 2013, 126, 3462-74.	1.2	149
67	A Reporter Screen in a Human Haploid Cell Line Identifies CYLD as a Constitutive Inhibitor of NF-κB. PLoS ONE, 2013, 8, e70339.	1.1	34
68	Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO Journal, 2012, 31, 1947-1960.	3.5	284
69	Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10059-10064.	3.3	46
70	Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011, 477, 340-343.	13.7	1,127
71	Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nature Biotechnology, 2011, 29, 542-546.	9.4	207
72	Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin <i>Clostridium difficile</i> transferase (CDT). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16422-16427.	3.3	175

#	Article	IF	CITATIONS
73	Identification of host cell factors required for intoxication through use of modified cholera toxin. Journal of Cell Biology, 2011, 195, 751-764.	2.3	61
74	A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11756-11765.	3.3	90
75	Generation of iPSCs from cultured human malignant cells. Blood, 2010, 115, 4039-4042.	0.6	206
76	Objective determination of the oncolytic potency of conditionallyâ€replicating adenoviruses using mathematical modeling. Journal of Gene Medicine, 2010, 12, 564-571.	1.4	6
77	Haploid Genetic Screens in Human Cells Identify Host Factors Used by Pathogens. Science, 2009, 326, 1231-1235.	6.0	452
78	Replacement of Native Adenovirus Receptor-Binding Sites with a New Attachment Moiety Diminishes Hepatic Tropism and Enhances Bioavailability in Mice. Human Gene Therapy, 2008, 19, 783-794.	1.4	9
79	Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Molecular Cancer Therapeutics, 2007, 6, 1552-1561.	1.9	30
80	A conditionally replicating adenovirus with strict selectivity in killing cells expressing epidermal growth factor receptor. Virology, 2007, 361, 56-67.	1.1	24
81	Genetic Targeting of Adenovirus Vectors Using a Reovirus $\ddot{l}f$ 1-Based Attachment Protein. Molecular Therapy, 2006, 13, 997-1005.	3.7	24
82	Cyclophosphamide Increases Transgene Expression Mediated by an Oncolytic Adenovirus in Glioma-Bearing Mice Monitored by Bioluminescence Imaging. Molecular Therapy, 2006, 14, 779-788.	3.7	82
83	Replication-dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice-acceptor site. Journal of Gene Medicine, 2005, 7, 1053-1062.	1.4	28
84	Tissue Inhibitor of Metalloproteinase-3 Expression from an Oncolytic Adenovirus Inhibits Matrix Metalloproteinase Activity In vivo without Affecting Antitumor Efficacy in Malignant Glioma. Cancer Research, 2005, 65, 9398-9405.	0.4	54
85	Coxsackievirus and Adenovirus Receptor Expression on Primary Osteosarcoma Specimens and Implications for Gene Therapy with Recombinant Adenoviruses. Clinical Cancer Research, 2005, 11, 2445-2448.	3.2	15
86	Gene-directed enzyme prodrug therapy with carboxylesterase enhances the anticancer efficacy of the conditionally replicating adenovirus Adî"24. Gene Therapy, 2005, 12, 1011-1018.	2.3	21
87	Conditionally Replicating Adenoviruses Expressing Short Hairpin RNAs Silence the Expression of a Target Gene in Cancer Cells. Cancer Research, 2004, 64, 2663-2667.	0.4	59
88	Cowpea Mosaic Virus 32- and 60-Kilodalton Replication Proteins Target and Change the Morphology of Endoplasmic Reticulum Membranes. Journal of Virology, 2002, 76, 6293-6301.	1.5	62
89	Coalescence of the Sites of Cowpea Mosaic Virus RNA Replication into a Cytopathic Structure. Journal of Virology, 2002, 76, 6235-6243.	1.5	29
90	Cowpea mosaic virus: effects on host cell processes. Molecular Plant Pathology, 2002, 3, 411-418.	2.0	31

#	Article	IF	CITATIONS
91	Subcellular location of the helper component-proteinase of Cowpea aphid-borne mosaic virus. Virus Genes, 2002, 25, 207-216.	0.7	20
92	Characterization of plant proteins that interact with cowpea mosaic virus â€~60K' protein in the yeast two-hybrid system. Journal of General Virology, 2002, 83, 885-893.	1.3	35
93	Mutational Analysis of the Genome-Linked Protein of Cowpea Mosaic Virus. Virology, 2001, 290, 21-29.	1.1	9
94	Alfalfa Mosaic Virus Replicase Proteins P1 and P2 Interact and Colocalize at the Vacuolar Membrane. Journal of Virology, 2001, 75, 1879-1887.	1.5	65
95	Cowpea Mosaic Virus Infection Induces a Massive Proliferation of Endoplasmic Reticulum but Not Golgi Membranes and Is Dependent on De Novo Membrane Synthesis. Journal of Virology, 2000, 74, 6556-6563.	1.5	125