
Claude De Bellefon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4879127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Process intensification of the catalytic hydrogenation of squalene using a Pd/CNT catalyst combining nanoparticles and single atoms in a continuous flow reactor. Chemical Engineering Journal, 2022, 441, 135951.	12.7	15
2	Multiphase alternated slug flows: Conditions to avoid coalescence and characterization of mass transfer between droplets. Chemical Engineering Journal, 2021, 407, 127215.	12.7	3
3	Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catalysis Science and Technology, 2021, 11, 984-999.	4.1	30
4	Aerobic Oxidative Cleavage of Vicinal Diol Fatty Esters by a Supported Ruthenium Hydroxide Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 13167-13175.	6.7	18
5	Kinetic Study of the Herrmann–Beller Palladacycle-Catalyzed Suzuki–Miyaura Coupling of 4-Iodoacetophenone and Phenylboronic Acid. Catalysts, 2020, 10, 989.	3.5	3
6	Self-Metathesis of Methyl Oleate Using Ru-NHC Complexes: A Kinetic Study. Catalysts, 2020, 10, 435.	3.5	3
7	Direct Synthesis of Nitriles from Carboxylic Acids Using Indium-Catalyzed Transnitrilation: Mechanistic and Kinetic Study. ACS Catalysis, 2019, 9, 9705-9714.	11.2	10
8	Continuous flow aerobic alcohol oxidation using a heterogeneous Ru ⁰ catalyst. Reaction Chemistry and Engineering, 2019, 4, 550-558.	3.7	10
9	Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene. Journal of Catalysis, 2019, 372, 226-244.	6.2	29
10	Reinvestigation of the Organocatalyzed Aerobic Oxidation of Aldehydes to Acids. Organic Letters, 2019, 21, 10134-10138.	4.6	38
11	About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction. Catalysts, 2019, 9, 60.	3.5	27
12	Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor. Journal of Flow Chemistry, 2018, 8, 3-9.	1.9	28
13	Continuous flow oxidation of benzylic and aliphatic alcohols using bleach: process improvement by precise pH adjustment in flow with CO2. Reaction Chemistry and Engineering, 2018, 3, 188-194.	3.7	10
14	A flow split test to discriminating between heterogeneous and homogeneous contributions in Suzuki coupling. Journal of Flow Chemistry, 2018, 8, 117-121.	1.9	10
15	Understanding the influence of hydrogen pressure on the enantioselectivity of hydrogenation: A combined theory-experiment approach. Journal of Organometallic Chemistry, 2017, 836-837, 90-99.	1.8	3
16	Epoxidation of methyl oleate with molecular oxygen: Implementation of Mukaiyama reaction in flow. European Journal of Lipid Science and Technology, 2017, 119, 1600281.	1.5	21
17	Metal-free, visible light-promoted aerobic aldehydes oxidation. Journal of Flow Chemistry, 2016, 6, 206-210.	1.9	12
18	Reaching steady state under cyclic operations with dispersion: The case of the reverse flow adsorber. Chemical Engineering Journal, 2016, 304, 209-215.	12.7	2

CLAUDE DE BELLEFON

#	Article	IF	CITATIONS
19	Hydrodynamics and mass transfer in a tubular reactor containing foam packings for intensification of G-L-S catalytic reactions in co-current up-flow configuration. Chemical Engineering Research and Design, 2016, 109, 686-697.	5.6	20
20	External liquid solid mass transfer for solid particles transported in a milli-channel within a gas–liquid segmented flow. Chemical Engineering Journal, 2016, 287, 92-102.	12.7	20
21	Epoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidation. Catalysis Science and Technology, 2016, 6, 4724-4732.	4.1	35
22	Continuous, Fast, and Safe Aerobic Oxidation of 2-Ethylhexanal: Pushing the Limits of the Simple Tube Reactor for a Gas/Liquid Reaction. Organic Process Research and Development, 2016, 20, 90-94.	2.7	31
23	Gas–Liquid Segmented Flow Microfluidics for Screening Copper/TEMPO atalyzed Aerobic Oxidation of Primary Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 739-746.	4.3	32
24	Milli-channel with metal foams under an applied gas–liquid periodic flow: External mass transfer performance and pressure drop. Chemical Engineering Journal, 2015, 267, 332-346.	12.7	62
25	Milli-channel with metal foams under an applied gas–liquid periodic flow: Flow patterns, residence time distribution and pulsing properties. Chemical Engineering Science, 2015, 126, 406-426.	3.8	41
26	In situ electrochemical regeneration of deactivated coated foam catalysts in a Robinson–Mahoney basket reactor: Example of Pd/C for nitrobenzene hydrogenation. Catalysis Today, 2015, 249, 52-58.	4.4	8
27	Liquid–Solid Mass Transfer for Microchannel Suspension Catalysis in Gas–Liquid and Liquid–Liquid Segmented Flow. Industrial & Engineering Chemistry Research, 2015, 54, 4699-4708.	3.7	42
28	Platinum nanoparticles in suspension are as efficient as Karstedt's complex for alkene hydrosilylation. Chemical Communications, 2015, 51, 16194-16196.	4.1	41
29	2. Catalytic engineering aspects of flow chemistry. , 2014, , 31-62.		2
30	Aldol-condensation of furfural by activated dolomite catalyst. Applied Catalysis B: Environmental, 2014, 144, 46-56.	20.2	78
31	Aerobic oxidation of aldehydes: selectivity improvement using sequential pulse experimentation in continuous flow microreactor. RSC Advances, 2014, 4, 57159-57163.	3.6	21
32	Insights in the aerobic oxidation of aldehydes. RSC Advances, 2013, 3, 18931.	3.6	51
33	Regeneration of deactivated catalysts coated on foam and monolith: Example of Pd/C for nitrobenzene hydrogenation. Applied Catalysis A: General, 2013, 453, 28-33.	4.3	15
34	Comments on "Nanoporous aluminosilicate mediated transacetalization reactions: application in glycerol valorization―by A. E. Graham et al., Catal. Sci. Technol., 2012, 2, 2258. Catalysis Science and Technology, 2013, 3, 1644.	4.1	0
35	Gas–liquid–solid "slurry Taylor―flow: Experimental evaluation through the catalytic hydrogenation of 3-methyl-1-pentyn-3-ol. Chemical Engineering Journal, 2013, 227, 174-181.	12.7	45
36	Mass transfer characterisation of a microstructured falling film at pilot scale. Chemical Engineering Journal, 2013, 227, 182-190.	12.7	35

CLAUDE DE BELLEFON

#	Article	IF	CITATIONS
37	Methanol dehydration over commercially available zeolites: Effect of hydrophobicity. Catalysis Today, 2013, 215, 239-242.	4.4	30
38	A Safe and Efficient Flow Oxidation of Aldehydes with O ₂ . Organic Letters, 2013, 15, 5978-5981.	4.6	80
39	IMRET 12. Green Processing and Synthesis, 2012, 1, .	3.4	0
40	Vapor–Liquid Equilibria of Glycerol, 1,3-Propanediol, Glycerol + Water, and Glycerol + 1,3-Propanediol. Journal of Chemical & Engineering Data, 2012, 57, 284-289.	1.9	20
41	Further insight in the minor/major concept using hydrogen pressure effect in asymmetric hydrogenation. Journal of Molecular Catalysis A, 2012, 363-364, 214-222.	4.8	6
42	A Method to Identify Best Available Technologies (BAT) for Hydrogenation Reactors in the Pharmaceutical Industry. Journal of Flow Chemistry, 2012, 2, 77-82.	1.9	9
43	Solvent effects in liquid-phase dehydration reaction of ethanol to diethylether catalysed by sulfonic-acid catalyst. Applied Catalysis A: General, 2011, 394, 276-280.	4.3	20
44	High Throughput Screening and Evolution of a Library of Ligands in Asymmetric H-Transfer Reduction of Acetophenone. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 393-413.	1.1	4
45	Depollution: A matter of catalyst and reactor design. Comptes Rendus Chimie, 2010, 13, 488-493.	0.5	1
46	Gas–liquid Taylor flow in square micro-channels: New inlet geometries and interfacial area tuning. Chemical Engineering Journal, 2010, 165, 290-300.	12.7	47
47	Dégradation photocatalytique des ions ammonium en présence de TiO2Âdopé. Comptes Rendus Chimie, 2010, 13, 502-507.	0.5	6
48	Design of a Genetic Algorithm for the Simulated Evolution of a Library of Asymmetric Transfer Hydrogenation Catalysts. Chemistry - A European Journal, 2009, 15, 6267-6278.	3.3	23
49	Switching from water to ionic liquids for the production of methylchloride: Catalysis and reactor issues. Chemical Engineering Journal, 2009, 145, 441-445.	12.7	6
50	Extensive Reâ€Investigations of Pressure Effects in Rhodium―Catalyzed Asymmetric Hydrogenations. Advanced Synthesis and Catalysis, 2008, 350, 898-908.	4.3	26
51	Gas–liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor. Lab on A Chip, 2008, 8, 814.	6.0	69
52	Highly Regioselective Bromination of BINAP in [Hmim]PF6 Ionic Liquid. Synthetic Communications, 2007, 38, 141-147.	2.1	6
53	New 5,5′-disubstituted BINAP derivatives: Syntheses and pressure and electronic effects in Rh asymmetric hydrogenation. Journal of Molecular Catalysis A, 2007, 268, 205-212.	4.8	12
54	2,2′-Bis-[bis(4-substituted-phenyl)phosphino]-1,1′-binaphthyl derivatives in Rh(I)-catalyzed hydrogenation of acetamidoacrylic acid derivatives: Electronic effects. Journal of Molecular Catalysis A, 2007, 271, 18-24.	4.8	17

CLAUDE DE BELLEFON

#	Article	IF	CITATIONS
55	Design and Implementation of a Novel Quench Flow Reactor for the Study of Nascent Olefin Polymerisation. Macromolecular Reaction Engineering, 2007, 1, 284-294.	1.5	15
56	Micro-structured reactors as a tool for chiral modifier screening in gas–liquid–solid asymmetric hydrogenations. Catalysis Today, 2007, 125, 34-39.	4.4	20
57	Effect of gas–liquid mass transfer on enantioselectivity in asymmetric hydrogenations. Journal of Molecular Catalysis A, 2006, 252, 85-89.	4.8	9
58	Deposition of Pt-catalyst in a micro-channel of a silicon reactor: Application to gas micro-TAS working at high temperature. Sensors and Actuators B: Chemical, 2006, 118, 297-304.	7.8	16
59	Depollution of Waters Contaminated by Phenols and Chlorophenols Using Catalytic Hydrogenation. , 2005, , 601-613.		3
60	Asymmetric catalytic hydrogenations at micro-litre scale in a helicoidal single channel falling film micro-reactor. Catalysis Today, 2005, 110, 179-187.	4.4	48
61	Design and fabrication of a structured catalytic reactor at micrometer scale: Example of methylcyclohexane dehydrogenation. Catalysis Today, 2005, 110, 164-170.	4.4	24
62	Investigations on pulse broadening for catalyst screening in gas/liquid systems. AICHE Journal, 2004, 50, 1814-1823.	3.6	15
63	Gas–liquid and gas–liquid–solid catalysis in a mesh microreactor. Chemical Communications, 2004, , 372-373.	4.1	74
64	Gas/Liquid Mass Transfer in Small Laboratory Batch Reactors:Â Comparison of Methods. Industrial & Engineering Chemistry Research, 2004, 43, 924-927.	3.7	43
65	Effect of Water on αâ€Methylstyrene Hydrogenation on Pd/Al ₂ O ₃ . Canadian Journal of Chemical Engineering, 2004, 82, 190-193.	1.7	18
66	Mass Transfer Limitations: A Bottleneck for High Throughput Screening in Multiphase Catalysis. ChemInform, 2003, 34, no.	0.0	0
67	Catalytic cleavage of the Siî—,Si bond of methylchlorodisilanes with nucleophiles: evidences for a stabilised silylene reaction intermediate. Inorganica Chimica Acta, 2003, 350, 407-413.	2.4	8
68	High-Throughput Screening of Molecular Catalysts Using Automated Liquid Handling, Injection, and Microdevices. Chimia, 2002, 56, 621-626.	0.6	35
69	Kinetics of α-Methylstyrene Hydrogenation on Pd/Al2O3. Industrial & Engineering Chemistry Research, 2002, 41, 1711-1715.	3.7	52
70	Transient operation of a catalytic liquid–liquid plug flow reactor for kinetics measurements. Chemical Engineering Science, 2002, 57, 2697-2705.	3.8	6
71	Dynamic methods and new reactors for liquid phase molecular catalysis. Catalysis Today, 2001, 66, 145-155.	4.4	14
72	Application of a Micromixer for the High Troughput Screening of Fluid-Liquid Molecular Catalysis. , 2001, , 408-413.		7

5

#	Article	IF	CITATIONS
73	Efficient catalytic isomerization of allylic alcohols to carbonyl compounds with water soluble rhodium complexes. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 607-614.	0.1	5
74	Molten salts (ionic liquids) to improve the activity, selectivity and stability of the palladium catalysed Trost–Tsuji C–C coupling in biphasic media. Journal of Molecular Catalysis A, 1999, 145, 121-126.	4.8	97
75	Concomitant use of liquid–liquid batch and continuous plug flow reactors for kinetic model discrimination. Application to the Rh/TPPTS catalysed reduction of the C–C double bond in dimethylitaconate. Catalysis Today, 1999, 48, 211-219.	4.4	11
76	Hydrodechlorination and hydrodearomatisation of monoaromatic chlorophenols into cyclohexanol on Ru/C catalysts applied to water depollution: influence of the basic solvent and kinetics of the reactions. Applied Catalysis B: Environmental, 1999, 20, 91-100.	20.2	88
77	Three-Step Catalytic Detoxification Process of Wastewater Containing Chlorinated Aromatic Compounds:Â Experimental Results and Modeling Issues. Industrial & Engineering Chemistry Research, 1999, 38, 4213-4219.	3.7	18
78	A liquid-liquid plug-flow continuous reactor for the investigation of catalytic reactions: The centrifugal partition chromatograph. Chemical Engineering Science, 1998, 53, 71-74.	3.8	9
79	Original use of the liquid nature of the stationary phase in counter-current chromatography. Journal of Chromatography A, 1998, 828, 523-530.	3.7	7
80	New reactors and methods for the investigation of homogeneous catalysis. Journal of Organometallic Chemistry, 1998, 567, 143-150.	1.8	23
81	Effect of non-linear kinetics on the enantioselectivity in the H-transfer asymmetric homogeneous reduction of arylketones with a rhodium diamine catalyst. Tetrahedron: Asymmetry, 1998, 9, 3677-3686.	1.8	20
82	Solid effects on gas-liquid mass transfer in three-phase slurry catalytic hydrogenation of adiponitrile over raney nickel. Chemical Engineering Science, 1996, 51, 2149-2158.	3.8	24
83	Coordination chemistry of mono- and di-nitriles in [Ru3(CO)12â^'n(RCN)n] (n = 1–3): influence of the CO/nitrile ratio on fluxionality. Journal of Organometallic Chemistry, 1996, 513, 155-162.	1.8	7
84	Further studies on dppm-stabilized mixed-metal clusters: X-ray structure of PdPtCoCl(CO)3(μ-dppm)2 1. Journal of Cluster Science, 1995, 6, 175-185.	3.3	8
85	Monometallic Ni, Co and Ru, and bimetallic NiCr, NiTi and CoFe Ziegler-Sloan-Lapporte catalysts for the hydrogenation of adiponitrile into hexamethylenediamine: Effect of water and dopants. Applied Catalysis A: General, 1995, 133, 367-376.	4.3	22
86	Three-phase hydrogenation of adiponitrile catalyzed by raney nickel: Kinetic model discrimination and parameter optimization. Chemical Engineering Science, 1994, 49, 4839-4849.	3.8	23
87	Homogeneous and Heterogeneous Hydrogenation of Nitriles in a Liquid Phase: Chemical, Mechanistic, and Catalytic Aspects. Catalysis Reviews - Science and Engineering, 1994, 36, 459-506.	12.9	212