Yifeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4878989/publications.pdf

Version: 2024-02-01

489802 466096 1,350 33 18 32 citations h-index g-index papers 33 33 33 1651 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on <i>OsCKX4</i> to regulate lateral branching. Plant Physiology, 2022, 188, 460-476.	2.3	26
2	The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Molecular Plant, 2022, 15, 706-722.	3.9	52
3	WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice. Rice Science, 2021, 28, 1-5.	1.7	7
4	Posttranslational Modification of Waxy to Genetically Improve Starch Quality in Rice Grain. International Journal of Molecular Sciences, 2021, 22, 4845.	1.8	13
5	OsbZIP72 Is Involved in Transcriptional Gene-Regulation Pathway of Abscisic Acid Signal Transduction by Activating Rice High-Affinity Potassium Transporter OsHKT1;1. Rice Science, 2021, 28, 257-267.	1.7	16
6	bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1. Plant Physiology and Biochemistry, 2021, 169, 112-118.	2.8	8
7	OsABF1 Represses Gibberellin Biosynthesis to Regulate Plant Height and Seed Germination in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2021, 22, 12220.	1.8	9
8	Cyclin-Dependent Kinase Inhibitors KRP1 and KRP2 Are Involved in Grain Filling and Seed Germination in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2020, 21, 245.	1.8	12
9	Genome-Wide Identification of IncRNAs During Rice Seed Development. Genes, 2020, 11, 243.	1.0	15
10	Abscisic acid promotes jasmonic acid biosynthesis via a â€~SAPK10â€bZIP72â€∢i>AOCà' pathway to synergistically inhibit seed germination in rice (<i>Oryza sativa</i>). New Phytologist, 2020, 228, 1336-1353.	3.5	93
11	<i>RMS2</i> Encoding a GDSL Lipase Mediates Lipid Homeostasis in Anthers to Determine Rice Male Fertility. Plant Physiology, 2020, 182, 2047-2064.	2.3	57
12	SAPK10-Mediated Phosphorylation on WRKY72 Releases Its Suppression on Jasmonic Acid Biosynthesis and Bacterial Blight Resistance. IScience, 2019, 16, 499-510.	1.9	51
13	Protein Interactomic Analysis of SAPKs and ABA-Inducible bZIPs Revealed Key Roles of SAPK10 in Rice Flowering. International Journal of Molecular Sciences, 2019, 20, 1427.	1.8	18
14	<scp>NF</scp> â€ <scp>YB</scp> 1â€ <scp>YC</scp> 12â€ <scp>bHLH</scp> 144 complex directly activates <i>Wx</i> to regulate grain quality in rice (<i>Oryza sativa</i> L.). Plant Biotechnology Journal, 2019, 17, 1222-1235.	4.1	103
15	Construction of a Quantitative Acetylomic Tissue Atlas in Rice (Oryza sativa L.). Molecules, 2018, 23, 2843.	1.7	6
16	Notched Belly Grain 4, a Novel Allele of Dwarf 11, Regulates Grain Shape and Seed Germination in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2018, 19, 4069.	1.8	16
17	OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytologist, 2017, 215, 1090-1101.	3.5	156
18	A phosphoproteomic landscape of rice (<i>Oryza sativa</i>) tissues. Physiologia Plantarum, 2017, 160, 458-475.	2.6	28

#	Article	IF	Citations
19	DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2017, 120, 169-178.	2.8	6
20	A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (Oryza) Tj ETQq0	0 O ₁ .9BT /0	Overlock 10 1
21	Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence. International Journal of Molecular Sciences, 2017, 18, 2225.	1.8	22
22	A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2017, 18, 60.	1.8	31
23	A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2017, 18, 1376.	1.8	20
24	Mapping the N-linked glycosites of rice (Oryza sativa L.) germinating embryos. PLoS ONE, 2017, 12, e0173853.	1.1	15
25	Serine carboxypeptidase 46 Regulates Grain Filling and Seed Germination in Rice (Oryza sativa L.). PLoS ONE, 2016, 11, e0159737.	1.1	47
26	Heterologous Expression and Functional Analysis of Rice GLUTAMATE RECEPTOR-LIKE Family Indicates its Role in Glutamate Triggered Calcium Flux in Rice Roots. Rice, 2016, 9, 9.	1.7	33
27	Data set from a comprehensive phosphoproteomic analysis of rice variety IRBB5 in response to bacterial blight. Data in Brief, 2016, 6, 282-285.	0.5	4
28	Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). Plant Molecular Biology, 2016, 90, 249-265.	2.0	38
29	Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots. Journal of Experimental Botany, 2015, 66, 2535-2545.	2.4	24
30	The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels. Plant Cell, 2015, 27, 711-723.	3.1	120
31	Phosphate transporters <scp><scp>OsPHT1</scp></scp> ;9 and <scp><scp>OsPHT1</scp>;10 are involved in phosphate uptake in rice. Plant, Cell and Environment, 2014, 37, 1159-1170.</scp>	2.8	135
32	OsPHF1 Regulates the Plasma Membrane Localization of Low- and High-Affinity Inorganic Phosphate Transporters and Determines Inorganic Phosphate Uptake and Translocation in Rice À Â. Plant Physiology, 2011, 157, 269-278.	2.3	144
33	Chromosomeâ€level genome assembly defines femaleâ€biased genes associated with sex determination and differentiation in the human blood fluke <i>Schistosoma japonicum</i> . Molecular Ecology Resources, 0, , .	2.2	1