Yiyun Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/487837/publications.pdf

Version: 2024-02-01

		26610	26591
143	12,297	56	107
papers	citations	h-index	g-index
165	165	165	12528
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Catechol-Based Polymers with High Efficacy in Cytosolic Protein Delivery. CCS Chemistry, 2023, 5, 1411-1421.	4.6	20
2	Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. Chinese Chemical Letters, 2022, 33, 575-586.	4.8	55
3	Targeted and intracellular delivery of protein therapeutics by a boronated polymer for the treatment of bone tumors. Bioactive Materials, 2022, 7, 333-340.	8.6	27
4	Bioinspired Integration of Naturally Occurring Molecules towards Universal and Smart Antibacterial Coatings. Advanced Functional Materials, 2022, 32, 2108749.	7.8	71
5	All-small-molecule supramolecular hydrogels assembled from guanosine 5′-monophosphate disodium salt and tobramycin for the treatment of bacterial keratitis. Bioactive Materials, 2022, 16, 293-300.	8.6	18
6	Amphipathic poly- \hat{l}^2 -peptides for intracellular protein delivery. Chemical Communications, 2022, 58, 4320-4323.	2.2	4
7	Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides. Accounts of Chemical Research, 2022, 55, 722-733.	7.6	52
8	Layerâ€byâ€Layer Assembled Smart Antibacterial Coatings via Musselâ€Inspired Polymerization and Dynamic Covalent Chemistry. Advanced Healthcare Materials, 2022, 11, e2200112.	3.9	33
9	A Smart Hydrogel with Antiâ€Biofilm and Antiâ€Virulence Activities to Treat <i>Pseudomonas aeruginosa</i> Infections. Advanced Healthcare Materials, 2022, 11, e2200299.	3.9	12
10	A fluorinated peptide with high serum- and lipid-tolerence for the delivery of siRNA drugs to treat obesity and metabolic dysfunction. Biomaterials, 2022, 285, 121541.	5.7	15
11	Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 2021, 11, 614-648.	4.6	200
12	Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery. Biomaterials, 2021, 268, 120600.	5.7	37
13	A smart hydrogel for on-demand delivery of antibiotics and efficient eradication of biofilms. Science China Materials, 2021, 64, 1035-1046.	3.5	26
14	Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials, 2021, 265, 120404.	5.7	99
15	Breaking the vicious cycle between tumor cell proliferation and bone resorption by chloroquine-loaded and bone-targeted polydopamine nanoparticles. Science China Materials, 2021, 64, 474-487.	3.5	12
16	Editorial: Novel Nanotechnology for Diagnosing and Treating Eye Disorders. Frontiers in Bioengineering and Biotechnology, 2021, 9, 639230.	2.0	0
17	Design of polymers for siRNA delivery: Recent progress and challenges. View, 2021, 2, 20200026.	2.7	29
18	Polycatechol Mediated Small Interfering RNA Delivery for the Treatment of Ulcerative Colitis. Advanced Functional Materials, 2021, 31, 2101646.	7.8	30

#	Article	IF	CITATIONS
19	Nanomedicines for the treatment of glaucoma: Current status and future perspectives. Acta Biomaterialia, 2021, 125, 41-56.	4.1	12
20	Design of Polymers for Intracellular Protein and Peptide Delivery. Chinese Journal of Chemistry, 2021, 39, 1443-1449.	2.6	41
21	Aminoglycosideâ€Based Biomaterials: From Material Design to Antibacterial and Gene Delivery Applications. Advanced Functional Materials, 2021, 31, 2103718.	7.8	28
22	A manganese (II)-based coordinative dendrimer with robust efficiency in intracellular peptide delivery. Bioactive Materials, 2021, 9, 44-53.	8.6	22
23	A pH-Responsive Phase-Transition Polymer with High Serum Stability in Cytosolic Protein Delivery. Nano Letters, 2021, 21, 7855-7861.	4.5	28
24	Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chemical Society Reviews, 2021, 50, 5435-5467.	18.7	151
25	Stimuli-responsive polydopamine-based smart materials. Chemical Society Reviews, 2021, 50, 8319-8343.	18.7	262
26	Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress. Small, 2021, 17, e2102485.	5. 2	57
27	Dynamic Polymer Amphiphiles for Efficient Intracellular and In Vivo Protein Delivery. Advanced Materials, 2021, 33, e2104355.	11.1	46
28	Library Screening to Identify Highly-Effective Autophagy Inhibitors for Improving Photothermal Cancer Therapy. Nano Letters, 2021, 21, 9476-9484.	4.5	9
29	A Duplex CRISPR-Cas9 Ribonucleoprotein Nanomedicine for Colorectal Cancer Gene Therapy. Nano Letters, 2021, 21, 9761-9771.	4.5	38
30	All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation. Chinese Chemical Letters, 2020, 31, 869-874.	4.8	67
31	A Coordinative Dendrimer Achieves Excellent Efficiency in Cytosolic Protein and Peptide Delivery. Angewandte Chemie, 2020, 132, 4741-4749.	1.6	8
32	A Coordinative Dendrimer Achieves Excellent Efficiency in Cytosolic Protein and Peptide Delivery. Angewandte Chemie - International Edition, 2020, 59, 4711-4719.	7.2	128
33	Stimuliâ€Responsive Hydrogels with Antibacterial Activity Assembled from Guanosine, Aminoglycoside, and a Bifunctional Anchor. Advanced Healthcare Materials, 2020, 9, e1901329.	3.9	57
34	Boronic acid-rich dendrimer for efficient intracellular peptide delivery. Science China Materials, 2020, 63, 620-628.	3.5	31
35	Peptide modified polycations with pH triggered lytic activity for efficient gene delivery. Biomaterials Science, 2020, 8, 6301-6308.	2.6	4
36	Carrierâ€Free Platinum Nanomedicine for Targeted Cancer Therapy. Small, 2020, 16, e2004829.	5 . 2	28

#	Article	IF	Citations
37	Natural polyphenols in drug delivery systems: Current status and future challenges. Giant, 2020, 3, 100022.	2.5	102
38	The $REG\hat{I}^3$ inhibitor NIP30 increases sensitivity to chemotherapy in p53-deficient tumor cells. Nature Communications, 2020, 11, 3904.	5.8	10
39	Fluoroalkylation promotes cytosolic peptide delivery. Science Advances, 2020, 6, eaaz1774.	4.7	80
40	A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1043-1052.	15.6	332
41	Amplification of oxidative stress <i>via</i> intracellular ROS production and antioxidant consumption by two natural drug-encapsulated nanoagents for efficient anticancer therapy. Nanoscale Advances, 2020, 2, 3872-3881.	2.2	13
42	<i>In Vivo</i> Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45763-45771.	4.0	21
43	Bifunctional and Bioreducible Dendrimer Bearing a Fluoroalkyl Tail for Efficient Protein Delivery Both <i>In Vitro</i> and <i>In Vivo</i> Nano Letters, 2020, 20, 8600-8607.	4.5	51
44	Polydopamine Nanomaterials: Metalâ€Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics (Small 18/2020). Small, 2020, 16, 2070102.	5.2	4
45	Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Therapy, 2020, 27, 383-391.	2.3	27
46	An elastic gel consisting of natural polyphenol and pluronic for simultaneous dura sealing and treatment of spinal cord injury. Journal of Controlled Release, 2020, 323, 613-623.	4.8	25
47	Metalâ€Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. Small, 2020, 16, e1907042.	5. 2	240
48	Innenrýcktitelbild: A Coordinative Dendrimer Achieves Excellent Efficiency in Cytosolic Protein and Peptide Delivery (Angew. Chem. 12/2020). Angewandte Chemie, 2020, 132, 5000-5000.	1.6	0
49	Tailoring guanidyl-rich polymers for efficient cytosolic protein delivery. Journal of Controlled Release, 2020, 320, 412-420.	4.8	56
50	Melanin-like nanoparticles loaded with an angiotensin antagonist for an improved photothermal cancer therapy. Biomaterials Science, 2020, 8, 1658-1668.	2.6	14
51	Boronic acid-engineered gold nanoparticles for cytosolic protein delivery. Biomaterials Science, 2020, 8, 3741-3750.	2.6	18
52	Natural Polyphenol Inspired Polycatechols for Efficient siRNA Delivery. CCS Chemistry, 2020, 2, 146-157.	4.6	71
53	S,S-Tetrazine-Based Hydrogels with Visible Light Cleavable Properties for On-Demand Anticancer Drug Delivery. Research, 2020, 2020, 6563091.	2.8	12
54	Fluorinated Polyethylenimine to Enable Transmucosal Delivery of Photosensitizer onjugated Catalase for Photodynamic Therapy of Orthotopic Bladder Tumors Postintravesical Instillation. Advanced Functional Materials, 2019, 29, 1901932.	7.8	102

#	Article	IF	Citations
55	Smart Hydrogels with Antibacterial Properties Built from All Natural Building Blocks. Chemistry of Materials, 2019, 31, 7678-7685.	3.2	97
56	Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids. Science Advances, 2019, 5, eaaw4252.	4.7	58
57	Polymers for cytosolic protein delivery. Biomaterials, 2019, 218, 119358.	5.7	187
58	All-small-molecule dynamic covalent hydrogels with multistimuli responsiveness. Materials Chemistry Frontiers, 2019, 3, 472-475.	3.2	27
59	A pH-responsive hydrogel with potent antibacterial activity against both aerobic and anaerobic pathogens. Biomaterials Science, 2019, 7, 581-584.	2.6	59
60	A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Science Advances, 2019, 5, eaaw8922.	4.7	273
61	G-quadruplex-based antiviral hydrogels by direct gelation of clinical drugs. Materials Chemistry Frontiers, 2019, 3, 1323-1327.	3.2	22
62	Fluorinated Polymer Mediated Transmucosal Peptide Delivery for Intravesical Instillation Therapy of Bladder Cancer. Small, 2019, 15, e1900936.	5.2	57
63	Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials, 2019, 207, 1-9.	5.7	118
64	Natural Polyphenols Augment Cytosolic Protein Delivery by a Functional Polymer. Chemistry of Materials, 2019, 31, 1956-1965.	3.2	81
65	Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy. Biomaterials, 2019, 203, 63-72.	5.7	149
66	One stone with two birds: Phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials, 2019, 194, 130-138.	5.7	54
67	A Guanidinium-Rich Polymer for Efficient Cytosolic Delivery of Native Proteins. Bioconjugate Chemistry, 2019, 30, 413-417.	1.8	47
68	A Carboxyl-Terminated Dendrimer Enables Osteolytic Lesion Targeting and Photothermal Ablation of Malignant Bone Tumors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 160-168.	4.0	32
69	A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy. Journal of Materials Chemistry B, 2018, 6, 2474-2480.	2.9	44
70	A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules, 2018, 19, 2194-2201.	2.6	53
71	The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nature Communications, 2018, 9, 1377.	5.8	233
72	A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity. ACS Applied Materials & Discrete Representation (1988) 10, 15163-15173.	4.0	159

#	Article	IF	Citations
73	Foe to Friend: Supramolecular Nanomedicines Consisting of Natural Polyphenols and Bortezomib. Nano Letters, 2018, 18, 7045-7051.	4.5	109
74	Green Tea Catechin Dramatically Promotes RNAi Mediated by Low-Molecular-Weight Polymers. ACS Central Science, 2018, 4, 1326-1333.	5.3	135
75	Statistical <i>versus</i> block fluoropolymers in gene delivery. Journal of Materials Chemistry B, 2018, 6, 7230-7238.	2.9	31
76	Multifunctional melanin-like nanoparticles for bone-targeted chemo-photothermal therapy of malignant bone tumors and osteolysis. Biomaterials, 2018, 183, 10-19.	5.7	105
77	Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials, 2018, 182, 167-175.	5.7	100
78	Skin Pigmentationâ€Inspired Polydopamine Sunscreens. Advanced Functional Materials, 2018, 28, 1802127.	7.8	122
79	A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. Journal of Controlled Release, 2017, 247, 145-152.	4.8	148
80	A Polydopamine Nanoparticle-Knotted Poly(ethylene glycol) Hydrogel for On-Demand Drug Delivery and Chemo-photothermal Therapy. Chemistry of Materials, 2017, 29, 1370-1376.	3.2	182
81	Rational Design of a Polymer with Robust Efficacy for Intracellular Protein and Peptide Delivery. Nano Letters, 2017, 17, 1678-1684.	4.5	156
82	A core–shell structured polyplex for efficient and non-toxic gene delivery. Journal of Materials Chemistry B, 2017, 5, 5101-5108.	2.9	11
83	Dynamic Modulation of Enzyme Activity by Nearâ€Infrared Light. Angewandte Chemie - International Edition, 2017, 56, 6767-6772.	7.2	86
84	Dynamic Modulation of Enzyme Activity by Nearâ€Infrared Light. Angewandte Chemie, 2017, 129, 6871-6876.	1.6	28
85	Fabrication of Low-Generation Dendrimers into Nanostructures for Efficient and Nontoxic Gene Delivery. Topics in Current Chemistry, 2017, 375, 62.	3.0	17
86	A Combination of Guanidyl and Phenyl Groups on a Dendrimer Enables Efficient siRNA and DNA Delivery. Biomacromolecules, 2017, 18, 2371-2378.	2.6	53
87	Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light. ACS Applied Materials & Diterfaces, 2017, 9, 24511-24517.	4.0	63
88	Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials, 2017, 141, 116-124.	5.7	143
89	Osteotropic peptide-mediated bone targeting for photothermal treatment of bone tumors. Biomaterials, 2017, 114, 97-105.	5.7	57
90	A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials, 2017, 112, 133-140.	5.7	98

#	Article	IF	CITATIONS
91	Dendritic Platinum–Copper Alloy Nanoparticles as Theranostic Agents for Multimodal Imaging and Combined Chemophotothermal Therapy. Advanced Functional Materials, 2016, 26, 5971-5978.	7.8	60
92	Dendrimer-Templated Ultrasmall and Multifunctional Photothermal Agents for Efficient Tumor Ablation. ACS Nano, 2016, 10, 4863-4872.	7.3	100
93	Cancer Therapy: Dendritic Platinum-Copper Alloy Nanoparticles as Theranostic Agents for Multimodal Imaging and Combined Chemophotothermal Therapy (Adv. Funct. Mater. 33/2016). Advanced Functional Materials, 2016, 26, 5950-5950.	7.8	2
94	Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery. Acta Biomaterialia, 2016, 46, 204-210.	4.1	46
95	Enhanced siRNA delivery of a cyclododecylated dendrimer compared to its linear derivative. Journal of Materials Chemistry B, 2016, 4, 5654-5658.	2.9	6
96	Screening of efficient siRNA carriers in a library of surface-engineered dendrimers. Scientific Reports, 2016, 6, 25069.	1.6	37
97	Screening of efficient polymers for siRNA delivery in a library of hydrophobically modified polyethyleneimines. Journal of Materials Chemistry B, 2016, 4, 6468-6474.	2.9	39
98	Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials, 2016, 104, 129-137.	5.7	87
99	Bone and metal targeted polymeric nanoparticles (US20150125391 A1): a patent evaluation. Expert Opinion on Therapeutic Patents, 2016, 26, 987-991.	2.4	1
100	How can we use dendrimer-templated ultrasmall and multifunctional nanoparticles in photothermal cancer therapy?. Nanomedicine, 2016, 11, 3181-3183.	1.7	2
101	A Facile Strategy to Prepare Dendrimer-stabilized Gold Nanorods with Sub-10-nm Size for Efficient Photothermal Cancer Therapy. Scientific Reports, 2016, 6, 22764.	1.6	29
102	Clustering Small Dendrimers into Nanoaggregates for Efficient DNA and siRNA Delivery with Minimal Toxicity. Advanced Healthcare Materials, 2016, 5, 584-592.	3.9	33
103	Stimuli-responsive dendrimers in drug delivery. Biomaterials Science, 2016, 4, 375-390.	2.6	168
104	Temperature-Responsive Gene Silencing by a Smart Polymer. Bioconjugate Chemistry, 2016, 27, 495-499.	1.8	11
105	Structure–activity relationship of dendrimers engineered with twenty common amino acids in gene delivery. Acta Biomaterialia, 2016, 29, 94-102.	4.1	40
106	Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials, 2016, 81, 114-124.	5.7	362
107	Tailoring the dendrimer core for efficient gene delivery. Acta Biomaterialia, 2016, 35, 1-11.	4.1	73
108	Being Two Is Better than Being One: A Facile Strategy to Fabricate Multicomponent Nanoparticles for Efficient Gene Delivery. Bioconjugate Chemistry, 2016, 27, 638-646.	1.8	6

#	Article	IF	CITATIONS
109	Fluorinated dendrimer for TRAIL gene therapy in cancer treatment. Journal of Materials Chemistry B, 2016, 4, 1354-1360.	2.9	33
110	Self-assembled fluorodendrimers in the co-delivery of fluorinated drugs and therapeutic genes. Polymer Chemistry, 2016, 7, 2319-2322.	1.9	32
111	Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery. Chemical Communications, 2016, 52, 978-981.	2.2	134
112	Improving gene transfection efficacy of low generation dendrimers through specific hydrogen-bond recognition. Journal of Controlled Release, 2015, 213, e82-e83.	4.8	1
113	Self-assembled fluorodendrimers allow efficient transfection with ultra-low DNA dose. Journal of Controlled Release, 2015, 213, e42.	4.8	2
114	Selfâ€Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angewandte Chemie - International Edition, 2015, 54, 11647-11651.	7.2	152
115	Catechol-grafted dendrimer with a neutral shell allows pH-triggered "off–on―release of bortezomib. Journal of Controlled Release, 2015, 213, e78-e79.	4.8	1
116	Tumor extracellular acidity activated "off–on―release of bortezomib from a biocompatible dendrimer. Biomaterials Science, 2015, 3, 480-489.	2.6	41
117	Triazine-modified dendrimer for efficient TRAIL gene therapy in osteosarcoma. Acta Biomaterialia, 2015, 17, 115-124.	4.1	47
118	Hydrogen-bonding dramatically modulates the gene transfection efficacy of surface-engineered dendrimers. Biomaterials Science, 2015, 3, 500-508.	2.6	11
119	Trifolium-like Platinum Nanoparticle-Mediated Photothermal Therapy Inhibits Tumor Growth and Osteolysis in a Bone Metastasis Model. Small, 2015, 11, 2080-2086.	5.2	87
120	A supramolecular approach to improve the gene transfection efficacy of dendrimers. Chemical Communications, 2015, 51, 9741-9743.	2.2	8
121	Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery. Acta Biomaterialia, 2015, 22, 111-119.	4.1	35
122	Surface-Engineered Dendrimers in Gene Delivery. Chemical Reviews, 2015, 115, 5274-5300.	23.0	369
123	Efficient delivery of small interfering RNA into cancer cells using dodecylated dendrimers. Journal of Materials Chemistry B, 2015, 3, 8197-8202.	2.9	12
124	Dramatic shape transformation of Ag nanoparticles with concave facets in a solvothermal process. CrystEngComm, 2015, 17, 7469-7472.	1.3	4
125	Transdermal delivery of therapeutic agents using dendrimers (US20140018435A1): a patent evaluation. Expert Opinion on Therapeutic Patents, 2015, 25, 1209-1214.	2.4	17
126	Triggered release of anticancer drugs from PEGylated polydopamine nanospheres by near-infrared light. Journal of Controlled Release, 2015, 213, e122.	4.8	5

#	Article	IF	Citations
127	Nucleobase-modified dendrimers as nonviral vectors for efficient and low cytotoxic gene delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1148-1155.	2.5	14
128	Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. Journal of Materials Chemistry B, 2015, 3, 642-650.	2.9	60
129	Fluorinated poly(propylenimine) dendrimers as gene vectors. Biomaterials, 2014, 35, 5407-5413.	5.7	131
130	Dendrimer–surfactant interactions. Soft Matter, 2014, 10, 2714.	1.2	26
131	A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nature Communications, 2014, 5, 3053.	5.8	329
132	Surface-Engineered Dendrimers with a Diaminododecane Core Achieve Efficient Gene Transfection and Low Cytotoxicity. Bioconjugate Chemistry, 2014, 25, 342-350.	1.8	44
133	Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials, 2014, 35, 9187-9198.	5.7	74
134	The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials, 2014, 35, 6603-6613.	5.7	76
135	Hybrid Anion Exchange Hollow Fiber Membrane for Delivery of Ionic Drugs. International Journal of Chemical Engineering, 2012, 2012, 1-9.	1.4	2
136	Disulfide Cross-Linked Low Generation Dendrimers with High Gene Transfection Efficacy, Low Cytotoxicity, and Low Cost. Journal of the American Chemical Society, 2012, 134, 17680-17687.	6.6	221
137	Host–Guest Chemistry of Dendrimer–Cyclodextrin Conjugates: Selective Encapsulations of Guests within Dendrimer or Cyclodextrin Cavities Revealed by NOE NMR Techniques. Journal of Physical Chemistry B, 2012, 116, 11217-11224.	1.2	42
138	Interactions between oppositely charged dendrimers. Soft Matter, 2012, 8, 9800.	1.2	14
139	NMR Insights into Dendrimer-Based Host–Guest Systems. Chemical Reviews, 2012, 112, 3856-3891.	23.0	147
140	Gold Nanocages: From Synthesis to Theranostic Applications. Accounts of Chemical Research, 2011, 44, 914-924.	7.6	755
141	Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chemical Society Reviews, 2011, 40, 2673.	18.7	481
142	High-Throughput Screening of Dendrimer-Binding Drugs. Journal of the American Chemical Society, 2010, 132, 13182-13184.	6.6	57
143	Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 2009, 8, 935-939.	13.3	1,335