Georgi N Vayssilov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4878251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acidic property of YNU-5 zeolite influenced by its unique micropore system. Microporous and Mesoporous Materials, 2022, 330, 111592.	2.2	3
2	Unraveling the Effect of Silanol Defects on the Insertion of Single-Site Mo in the MFI Zeolite Framework. Inorganic Chemistry, 2022, 61, 1418-1425.	1.9	14
3	Dissolution Behavior and Varied Mesoporosity of Zeolites by NH ₄ F Etching. Chemistry - A European Journal, 2022, 28, e202104339.	1.7	9
4	The relative stability of SCM-14 germanosilicate with different distributions of germanium ions in the absence and presence of structure-directing agents. Inorganic Chemistry Frontiers, 2022, 9, 3747-3757.	3.0	3
5	Key Role of aâ€Top CO on Terrace Sites of Metallic Pd Clusters for CO Oxidation. Chemistry - A European Journal, 2022, 28, .	1.7	5
6	Sodium and Magnesium Ion Location at the Backbone and at the Nucleobase of RNA: <i>Ab Initio</i> Molecular Dynamics in Water Solution. ACS Omega, 2022, 7, 23234-23244.	1.6	3
7	Charting the Atomic C Interaction with Transition Metal Surfaces. ACS Catalysis, 2022, 12, 9256-9269.	5.5	6
8	Infrared spectra of surface nitrates: Revision of the current opinions based on the case study of ceria. Journal of Catalysis, 2021, 394, 245-258.	3.1	53
9	Design of PEG-modified magnetic nanoporous silica based miltefosine delivery system: Experimental and theoretical approaches. Microporous and Mesoporous Materials, 2021, 310, 110664.	2.2	6
10	Catalytic conversion of ethene to butadiene or hydrogenation to ethane on HY zeolite-supported rhodium complexes: Cooperative support/Rh-center route. Journal of Chemical Physics, 2021, 154, 184706.	1.2	4
11	Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations. Journal of Materials Chemistry A, 2021, 9, 27347-27352.	5.2	33
12	Biomimetic CO oxidation below â^'100 °C by a nitrate-containing metal-free microporous system. Nature Communications, 2021, 12, 6033.	5.8	8
13	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie - International Edition, 2021, 60, 26702-26709.	7.2	17
14	Defect Formation, T-Atom Substitution and Adsorption of Guest Molecules in MSE-Type Zeolite Framework—DFT Modeling. Molecules, 2021, 26, 7296.	1.7	4
15	Revisiting ceria-NOx interaction: FTIR studies. Catalysis Today, 2020, 357, 613-620.	2.2	28
16	Influence of the adsorption of CO on the electronic structure of platinum clusters and nanowires deposited on CeO2(111) and γ-Al2O3(001) surfaces. Catalysis Today, 2020, 357, 442-452.	2.2	11
17	Stabilization of Super Electrophilic Pd ⁺² Cations in Small-Pore SSZ-13 Zeolite. Journal of Physical Chemistry C, 2020, 124, 309-321.	1.5	67
18	Preferential location of zirconium dopants in cerium dioxide nanoparticles and the effects of doping on their reducibility: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 26568-26582.	1.3	6

#	Article	IF	CITATIONS
19	Tamoxifen Delivery System Based on PEGylated Magnetic MCM-41 Silica. Molecules, 2020, 25, 5129.	1.7	8
20	Paraquat adsorption on NaY zeolite at various Si/Al ratios: A combined experimental and computational study. Materials Chemistry and Physics, 2019, 238, 121824.	2.0	25
21	Verapamil delivery systems on the basis of mesoporous ZSM-5/KIT-6 and ZSM-5/SBA-15 polymer nanocomposites as a potential tool to overcome MDR in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 460-472.	2.0	8
22	Characterization and temperature evolution of iron-containing species in HZSM-5 zeolite prepared from different iron sources. Journal of Porous Materials, 2019, 26, 1227-1240.	1.3	10
23	Hydrophobic Tungsten-Containing MFI-Type Zeolite Films for Exhaust Gas Detection. ACS Applied Materials & Interfaces, 2019, 11, 12914-12919.	4.0	16
24	Subsurface Carbon: A General Feature of Noble Metals. Angewandte Chemie - International Edition, 2019, 58, 1744-1748.	7.2	31
25	Subsurface Carbon: A General Feature of Noble Metals. Angewandte Chemie, 2019, 131, 1758-1762.	1.6	6
26	Modified mesoporous silica nanoparticles coated by polymer complex as novel curcumin delivery carriers. Journal of Drug Delivery Science and Technology, 2019, 49, 700-712.	1.4	27
27	Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. International Journal of Pharmaceutics, 2019, 556, 1-8.	2.6	50
28	Room-Temperature Ethene Hydrogenation Activity of Transition-Metal-Free HY Zeolites. ACS Catalysis, 2019, 9, 839-847.	5.5	12
29	Interaction of Na ⁺ , K ⁺ , Mg ²⁺ and Ca ²⁺ counter cations with RNA. Metallomics, 2018, 10, 659-678.	1.0	42
30	Computational elucidation of the reaction mechanism for synthesis of pyrrolidinedione derivatives via Nef-type rearrangement – cyclization reaction. RSC Advances, 2018, 8, 3178-3188.	1.7	4
31	Rücktitelbild: Achieving Atomic Dispersion of Highly Loaded Transition Metals in Smallâ€Pore Zeolite SSZâ€13: Highâ€Capacity and Highâ€Efficiency Lowâ€Temperature CO and Passive NO _{<i>x</i>} Adsorbers (Angew. Chem. 51/2018). Angewandte Chemie, 2018, 130, 17152-17152.	1.6	1
32	Structure and reducibility of yttrium-doped cerium dioxide nanoparticles and (111) surface. RSC Advances, 2018, 8, 33728-33741.	1.7	5
33	Achieving Atomic Dispersion of Highly Loaded Transition Metals in Smallâ€Pore Zeolite SSZâ€13: Highâ€Capacity and Highâ€Efficiency Lowâ€Temperature CO and Passive NO _{<i>x</i>} Adsorbers. Angewandte Chemie - International Edition, 2018, 57, 16672-16677.	7.2	129
34	Achieving Atomic Dispersion of Highly Loaded Transition Metals in Smallâ€Pore Zeolite SSZâ€13: High apacity and Highâ€Efficiency Lowâ€Temperature CO and Passive NO _{<i>x</i>} Adsorbers. Angewandte Chemie, 2018, 130, 16914-16919.	1.6	34
35	Species formed during NO adsorption and NO + O 2 co-adsorption on ceria: A combined FTIR and DFT study. Molecular Catalysis, 2018, 451, 114-124.	1.0	30
36	Amino-modified KIT-6 mesoporous silica/polymer composites for quercetin delivery: Experimental and theoretical approaches. Microporous and Mesoporous Materials, 2018, 270, 40-47.	2.2	18

#	Article	IF	CITATIONS
37	Decomposition behavior of platinum clusters supported on ceria and γ-alumina in the presence of carbon monoxide. Catalysis Science and Technology, 2017, 7, 734-742.	2.1	12
38	Approaching complexity of alkyl hydrogenation on Pd via density-functional modelling. Physical Chemistry Chemical Physics, 2017, 19, 21514-21521.	1.3	3
39	Elucidation of the higher coking resistance of small versus large nickel nanoparticles in methane dry reforming via computational modeling. Catalysis Science and Technology, 2017, 7, 3339-3347.	2.1	15
40	Synthesis, Modeling, and Catalytic Properties of HY Zeolite-Supported Rhodium Dinitrosyl Complexes. ACS Catalysis, 2017, 7, 5965-5982.	5.5	26
41	One-pot synthesis of silanol-free nanosized MFIÂzeolite. Nature Materials, 2017, 16, 1010-1015.	13.3	135
42	Ethene hydrogenation on zeolite-supported rhodium clusters. A mechanistic study by density functional and microkinetic modeling. Applied Catalysis A: General, 2017, 543, 201-208.	2.2	4
43	Partial Oxidation of Activated Aromatics on Molecular Sieve Catalysts. , 2017, , 493-496.		0
44	Experimental and theoretical study of quercetin complexes formed on pure silica and Zn-modified mesoporous MCM-41 and SBA-16 materials. Microporous and Mesoporous Materials, 2016, 228, 256-265.	2.2	21
45	Stabilization of Small Platinum Nanoparticles on Pt–CeO ₂ Thin Film Electrocatalysts During Methanol Oxidation. Journal of Physical Chemistry C, 2016, 120, 19723-19736.	1.5	50
46	Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule?. Physical Chemistry Chemical Physics, 2016, 18, 22108-22121.	1.3	113
47	Adsorption and transformations of ethene on hydrogenated rhodium clusters in faujasite-type zeolite. A computational study. Catalysis Science and Technology, 2016, 6, 1726-1736.	2.1	5
48	Hydrogen Adsorption on Small Zeolite-Supported Rhodium Clusters. A Density Functional Study. Journal of Physical Chemistry C, 2015, 119, 1121-1129.	1.5	13
49	Formation of N ₃ ^{â^`} during interaction of NO with reduced ceria. Chemical Communications, 2015, 51, 5668-5671.	2.2	12
50	Relative stability and reducibility of CeO2 and Rh/CeO2 species on the surface and in the cavities of γ-Al2O3: a periodic DFT study. Physical Chemistry Chemical Physics, 2015, 17, 22389-22401.	1.3	6
51	Effect of Si/Al Ratio and Rh Precursor Used on the Synthesis of HY Zeolite-Supported Rhodium Carbonyl Hydride Complexes. Journal of Physical Chemistry C, 2015, 119, 17166-17181.	1.5	32
52	Inhibition of Palm Oil Oxidation by Zeolite Nanocrystals. Journal of Agricultural and Food Chemistry, 2015, 63, 4655-4663.	2.4	10
53	Hydrogen Atom Transfer from Water or Alcohols Activated by Presolvated Electrons. Journal of Physical Chemistry Letters, 2015, 6, 986-992.	2.1	7
54	The structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling. Physical Chemistry Chemical Physics, 2015, 17, 14551-14560.	1.3	37

#	Article	IF	CITATIONS
55	FTIR and density functional study of NO interaction with reduced ceria: Identification of N3â^' and NO2â^' as new intermediates in NO conversion. Applied Catalysis B: Environmental, 2015, 176-177, 107-119.	10.8	43
56	Theoretical and Experimental Local Reactivity Parameters of 3-Substituted Coumarin Derivatives. Journal of Physical Chemistry A, 2014, 118, 11062-11073.	1.1	5
57	Predicting adsorption enthalpies on silicalite and HZSMâ€5: A benchmark study on DFT strategies addressing dispersion interactions. Journal of Computational Chemistry, 2014, 35, 809-819.	1.5	31
58	Effect of Si/Al Ratio on the Nature and Reactivity of HY Zeolite-Supported Rhodium Dicarbonyl Complexes. Journal of Physical Chemistry C, 2014, 118, 26772-26788.	1.5	16
59	How Absorbed Hydrogen Affects the Catalytic Activity of Transition Metals. Angewandte Chemie - International Edition, 2014, 53, 13371-13375.	7.2	73
60	New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. Microporous and Mesoporous Materials, 2014, 198, 247-255.	2.2	35
61	Ab Initio Molecular Dynamics of Na+and Mg2+Countercations at the Backbone of RNA in Water Solution. ACS Chemical Biology, 2013, 8, 1576-1589.	1.6	16
62	A Combined Pulsed Electron Paramagnetic Resonance Spectroscopic and DFT Analysis of the ¹³ CO ₂ and ¹³ CO Adsorption on the Metal–Organic Framework Cu _{2.97} Zn _{0.03} (btc) ₂ . Journal of Physical Chemistry C, 2013, 117, 8231-8240.	1.5	28
63	Framework Stability of Heteroatom-Substituted Forms of Extra-Large-Pore Ge-Silicate Molecular Sieves: The Case of ITQ-44. Chemistry of Materials, 2012, 24, 2509-2518.	3.2	26
64	Precise Identification of the Infrared Bands of the Polycarbonyl Complexes on Ni–MOR Zeolite by12C16O–13C18O Coadsorption and Computational Modeling. Journal of Physical Chemistry C, 2012, 116, 22823-22831.	1.5	15
65	Reverse hydrogen spillover on and hydrogenation of supported metal clusters: insights from computational model studies. Physical Chemistry Chemical Physics, 2012, 14, 5879.	1.3	18
66	Water Chemistry on Model Ceria and Pt/Ceria Catalysts. Journal of Physical Chemistry C, 2012, 116, 12103-12113.	1.5	108
67	Structural properties of metalâ€organic frameworks within the densityâ€functional based tightâ€binding method. Physica Status Solidi (B): Basic Research, 2012, 249, 335-342.	0.7	42
68	Cationic Zinc Species in ZSM-5 Zeolites: Structure and Stability from Embedded Cluster Modeling. Soft Materials, 2012, 10, 216-234.	0.8	3
69	Bayesian approach to electron correlation in density functional theory. Annalen Der Physik, 2012, 524, 822-825.	0.9	1
70	Defects in MOFs: A Thorough Characterization. ChemPhysChem, 2012, 13, 2025-2029.	1.0	121
71	Computational Modeling of Coordination Chemistry of Transition Metal Cations in Zeolites and in Metal-organic Frameworks. Current Physical Chemistry, 2012, 2, 189-199.	0.1	4
72	Interaction of ethene and ethyne with bare and hydrogenated Ir4 clusters. A density functional study. Catalysis Science and Technology, 2011, 1, 958.	2.1	11

#	Article	IF	CITATIONS
73	Effects of deposited Pt particles on the reducibility of CeO2(111). Physical Chemistry Chemical Physics, 2011, 13, 11384.	1.3	89
74	Density Functional Study of Hydrogen Bond Formation between Methanol and Organic Molecules Containing Cl, F, NH ₂ , OH, and COOH Functional Groups. Journal of Physical Chemistry A, 2011, 115, 14054-14068.	1.1	19
75	Density Functional Modeling of the Interactions of Platinum Clusters with CeO ₂ Nanoparticles of Different Size. Journal of Physical Chemistry C, 2011, 115, 16081-16086.	1.5	40
76	Computational evaluation of the capability of transition metal exchanged zeolites for complete purification of hydrogen for fuel cell applications: the cheapest performs the best. Energy and Environmental Science, 2011, 4, 1879.	15.6	5
77	Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nature Materials, 2011, 10, 310-315.	13.3	748
78	Determination of the optimal position of adjacent proton-donor centers for the activation or inhibition of peptide bond formation – A computational model study. Journal of Molecular Graphics and Modelling, 2011, 30, 10-14.	1.3	1
79	Reassignment of the Vibrational Spectra of Carbonates, Formates, and Related Surface Species on Ceria: A Combined Density Functional and Infrared Spectroscopy Investigation. Journal of Physical Chemistry C, 2011, 115, 23435-23454.	1.5	294
80	Impurity Atoms on Small Transition Metal Clusters. Insights from Density Functional Model Studies. Topics in Catalysis, 2011, 54, 363-377.	1.3	8
81	Coordination state of Cu+ ions in Cu-[Al]MCM-41. Applied Catalysis B: Environmental, 2011, 106, 186-186.	10.8	8
82	Enhanced reactivity of carbonyl compounds on MgO surface: A computational study. Journal of Molecular Catalysis A, 2011, 342-343, 67-73.	4.8	3
83	Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chemical Communications, 2010, 46, 5936.	2.2	160
84	Hierarchical approach to conformational search and selection of computational method in modeling the mechanism of ester ammonolysis. Journal of Molecular Graphics and Modelling, 2010, 29, 246-255.	1.3	5
85	Theoretical investigation of ethane dehydrogenation on cationic Zn species in ZSM-5 zeolites—The second Al center in vicinity of the cation is essential for the accomplishment of the complete catalytic cycle. Catalysis Today, 2010, 152, 78-87.	2.2	22
86	Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. Journal of Materials Chemistry, 2010, 20, 10535.	6.7	192
87	Catalytic Role of Vicinal OH in Ester Aminolysis: Proton Shuttle versus Hydrogen Bond Stabilization. Journal of Organic Chemistry, 2010, 75, 6782-6792.	1.7	18
88	Saturation of Small Supported Metal Clusters by Adsorbed Hydrogen. A Computational Study on Tetrahedral Models of Rh ₄ , Ir ₄ , and Pt ₄ . Journal of Physical Chemistry C, 2010, 114, 8500-8506.	1.5	27
89	Redox behavior of small metal clusters with respect to hydrogen. The effect of the cluster charge from density functional results. Physical Chemistry Chemical Physics, 2010, 12, 11015.	1.3	6

90 Computational Modelling of Nanoporous Materials. , 2009, , 211-238.

4

#	Article	IF	CITATIONS
91	Effect of the size of the quantum region in a hybrid embedded-cluster scheme for zeolite systems. Chemical Physics, 2009, 363, 33-41.	0.9	16
92	Density functional study of Ni6 clusters containing impurity atoms. Chemical Physics, 2008, 348, 61-68.	0.9	10
93	Hydrogen Adsorption on Zeolite-Supported Tetrairidium Clusters. Thermodynamic Modeling from Density Functional Calculations. Journal of Physical Chemistry C, 2008, 112, 18572-18577.	1.5	18
94	CO Coordination at XNi ₄ Clusters with Impurities X = H, C, O. A Density Functional Study. Journal of Physical Chemistry A, 2008, 112, 8523-8528.	1.1	3
95	Reverse Hydrogen Spillover onto Zeolite-Supported Metal Clusters:  An Embedded Cluster Density Functional Study of Models M ₆ (M = Rh, Ir, or Au). Journal of Physical Chemistry C, 2007, 111, 12340-12351.	1.5	57
96	Influence of Single Impurity Atoms on the Structure, Electronic, and Magnetic Properties of Ni5 Clusters. Journal of Physical Chemistry A, 2007, 111, 2067-2076.	1.1	10
97	Density Functional Study of Hydrogen Adsorption on Tetrairidium Supported on Hydroxylated and Dehydroxylated Zeolite Surfaces. Journal of Physical Chemistry C, 2007, 111, 14484-14492.	1.5	25
98	Unusual Carbonylâ^'Nitrosyl Complexes of Rh2+in Rhâ^'ZSM-5:  A Combined FTIR Spectroscopy and Computational Study. Journal of Physical Chemistry C, 2007, 111, 10412-10418.	1.5	13
99	First Hybrid Embedding Scheme for Polar Covalent Materials Using an Extended Border Region To Minimize Boundary Effects on the Quantum Region. Journal of Chemical Theory and Computation, 2007, 3, 2290-2300.	2.3	21
100	Density functional modeling of reverse hydrogen spillover on zeolite-supported tetrairidium clusters. Chemical Physics Letters, 2007, 444, 215-219.	1.2	30
101	Preface: Third Humboldt Conference on Computational Chemistry. International Journal of Quantum Chemistry, 2007, 107, 1651-1652.	1.0	Ο
102	Influence of BH3and alkaline cation released from the reduction agent on a tandem reduction/acylation reaction-A computational study. International Journal of Quantum Chemistry, 2007, 107, 1814-1825.	1.0	1
103	Structure, stability, electronic and magnetic properties of Ni4 clusters containing impurity atoms. Physical Chemistry Chemical Physics, 2006, 8, 1282.	1.3	21
104	The syn-Oriented 2-OH Provides a Favorable Proton Transfer Geometry in 1,2-Diol Monoester Aminolysis:Â Implications for the Ribosome Mechanism. Journal of the American Chemical Society, 2006, 128, 4964-4965.	6.6	50
105	Quantum chemical model study of the acyl migration in 2′(3′)-formylnucleosides. International Journal of Quantum Chemistry, 2006, 106, 1346-1356.	1.0	13
106	Heterolytic dissociation and recombination of H2 over Zn,H-ZSM-5 zeolites—A density functional model study. Journal of Molecular Catalysis A, 2006, 256, 149-155.	4.8	29
107	Theoretical elucidation of the regioselectivity in a tandem 1,4-hydride addition/acylation of diethylphosphonocoumarin. Computational and Theoretical Chemistry, 2006, 759, 177-187.	1.5	6
108	Theoretical investigation of Zn-containing species in pores of ZSM-5 zeolites. Studies in Surface Science and Catalysis, 2005, , 593-600.	1.5	11

#	Article	IF	CITATIONS
109	The cluster Ir4 and its interaction with a hydrogen impurity. A density functional study. Physical Chemistry Chemical Physics, 2005, 7, 2656.	1.3	36
110	Comparison of All Sites for Ti Substitution in Zeolite TS-1 by an Accurate Embedded-Cluster Method. Journal of Physical Chemistry B, 2005, 109, 24304-24310.	1.2	50
111	Reverse hydrogen spillover in supported subnanosize clusters of the metals of groups 8 to 11. A computational model study. Physical Chemistry Chemical Physics, 2005, 7, 4019.	1.3	51
112	Effects of the Aluminum Content of a Zeolite Framework:  A DFT/MM Hybrid Approach Based on Cluster Models Embedded in an Elastic Polarizable Environment. Journal of Chemical Theory and Computation, 2005, 1, 459-471.	2.3	36
113	Theoretical study of the o-OH participation in catechol ester ammonolysis. Organic and Biomolecular Chemistry, 2005, 3, 737.	1.5	16
114	Transition metal clusters and supported species with metal–carbon bonds from first-principles quantum chemistry. Journal of Organometallic Chemistry, 2004, 689, 4384-4394.	0.8	24
115	Theoretical Investigation of the Coordination of N2Ligands to the Cluster Ni3. Journal of Physical Chemistry A, 2004, 108, 6127-6144.	1.1	7
116	Free and Zeolite-Supported Hexarhodium Clusters with Light Impurity Atoms. Journal of Physical Chemistry B, 2004, 108, 180-192.	1.2	26
117	Supported metal species and adsorption complexes on metal oxides and in zeolites: Density functional cluster model studies. Theoretical and Computational Chemistry, 2004, , 367-450.	0.2	5
118	Oxidation of Supported Rhodium Clusters by Support Hydroxy Groups. Angewandte Chemie, 2003, 115, 1429-1432.	1.6	7
119	Oxidation of Supported Rhodium Clusters by Support Hydroxy Groups. Angewandte Chemie - International Edition, 2003, 42, 1391-1394.	7.2	107
120	Elastic Polarizable Environment Cluster Embedding Approach for Covalent Oxides and Zeolites Based on a Density Functional Method. Journal of Physical Chemistry B, 2003, 107, 2228-2241.	1.2	73
121	Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Advances in Catalysis, 2002, , 307-511.	0.1	450
122	A New Interpretation of the IR Bands of Supported Rh(I) Monocarbonyl Complexes. Journal of the American Chemical Society, 2002, 124, 3783-3786.	6.6	33
123	Determination of the basicity of alkali-exchanged molecular sieves. Physical Chemistry Chemical Physics, 2002, 4, 146-148.	1.3	12
124	Regio- and Stereoselective [2+2] Photodimerization of 3-Substituted 2-Alkoxy-2-oxo-2H-1,2-benzoxaphosphorines. Molecules, 2002, 7, 420-432.	1.7	28
125	Influence of Alkali and Alkaline Earth Cations on the BrÃ,nsted Acidity of Zeolites. Journal of Physical Chemistry B, 2001, 105, 4277-4284.	1.2	51
126	Dinitrogen as probe molecule of alkali-exchanged zeolites. Journal of Molecular Catalysis A, 2000, 162, 135-145.	4.8	25

8

#	Article	IF	CITATIONS
127	Structure and Bonding of a Site-Isolated Transition Metal Complex:Â Rhodium Dicarbonyl in Highly Dealuminated Zeolite Y. Journal of the American Chemical Society, 2000, 122, 8056-8066.	6.6	116
128	Interaction of Methanol with Alkali Metal Exchanged Molecular Sieves. 2. Density Functional Study. Journal of Physical Chemistry B, 2000, 104, 8614-8623.	1.2	63
129	Density Functional Studies of Alkali-Exchanged Zeolites: Basicity and Core-Level Shifts of Framework Oxygen Atoms. Journal of Catalysis, 1999, 186, 423-432.	3.1	59
130	Density Functional Studies of Alkali-Exchanged Zeolites. Cation Location at Six-Rings of Different Aluminum Content. Journal of Physical Chemistry B, 1999, 103, 7920-7928.	1.2	55
131	Catalytic Activity of Titanium Silicalites—a DFT Study. Journal of Catalysis, 1998, 175, 170-174.	3.1	87
132	Theoretical Modelling of Propane Partial Oxidation over Titanium Silicalites. , 1998, , 439-445.		0
133	Liquid phase oxidation of alkylaromatic hydrocarbons over titanium silicalites. Studies in Surface Science and Catalysis, 1997, 110, 909-918.	1.5	1
134	Structural and Physicochemical Features of Titanium Silicalites. Catalysis Reviews - Science and Engineering, 1997, 39, 209-251.	5.7	294
135	Catalytic oxidation of anisole over titanium silicalite-1. Chemical Engineering and Technology, 1997, 20, 333-337.	0.9	9
136	Theoretical models for description of the gas-solid surface vibrational interactions. Advances in Colloid and Interface Science, 1995, 57, 123-159.	7.0	5
137	Influence of the solid surface vibrations on the rate constants of surface reactions. Advances in Colloid and Interface Science, 1993, 43, 51-85.	7.0	5
138	Structure and catalytic transformations of lower hydrocarbons on single-crystal surfaces of transition metals. Advances in Colloid and Interface Science, 1993, 47, 25-57.	7.0	3
139	Para-selective alkylation of toluene with methanol over ZSM-5 zeolitesA kinetic model. Applied Catalysis A: General, 1993, 94, 117-130.	2.2	15
140	Effect of vibrational interaction on the rate of dissociation of adsorbed molecules: ethene on a nickel surface. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2049.	1.7	1
141	Memory effect on preexponential factor of rate constant for dissociation of adsorbed molecules. The Journal of Physical Chemistry, 1992, 96, 3452-3454.	2.9	4
142	Interaction between surface phonons and bond vibrations of molecules adsorbed perpendicular to a solid surface. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1627.	1.7	1
143	Temperature dependence of the rate constant for dissociation of absorbed molecules. Chemical Physics Letters, 1992, 188, 497-500.	1.2	5
144	Quantum Brownian motion and classical diffusion. Chemical Physics Letters, 1992, 195, 423-426.	1.2	7

#	Article	IF	CITATIONS
145	Energy transfer in adsorbed molecule-solid surface vibration interactions. Surface Science, 1991, 255, 355-360.	0.8	8
146	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie, 0, , .	1.6	4