Giuseppe Coclite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/487795/publications.pdf

Version: 2024-02-01

331538 289141 2,153 126 21 40 citations h-index g-index papers 128 128 128 633 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Traffic Flow on a Road Network. SIAM Journal on Mathematical Analysis, 2005, 36, 1862-1886.	0.9	285
2	On the well-posedness of the Degasperis–Procesi equation. Journal of Functional Analysis, 2006, 233, 60-91.	0.7	184
3	Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation. SIAM Journal on Mathematical Analysis, 2005, 37, 1044-1069.	0.9	131
4	Wellposedness for a parabolic-elliptic system. Discrete and Continuous Dynamical Systems, 2005, 13, 659-682.	0.5	95
5	On the Boundary Control of Systems of Conservation Laws. SIAM Journal on Control and Optimization, 2002, 41, 607-622.	1.1	51
6	On the uniqueness of discontinuous solutions to the Degasperis–Procesi equation. Journal of Differential Equations, 2007, 234, 142-160.	1.1	45
7	Well-posedness of higher-order Camassa–Holm equations. Journal of Differential Equations, 2009, 246, 929-963.	1.1	42
8	Convergence of the Ostrovsky equation to the Ostrovsky–Hunter one. Journal of Differential Equations, 2014, 256, 3245-3277.	1.1	40
9	Numerical schemes for computing discontinuous solutions of the Degasperis Procesi equation. IMA Journal of Numerical Analysis, 2007, 28, 80-105.	1.5	39
10	A Convergent Finite Difference Scheme for the Camassa–Holm Equation with General \$H^1\$ Initial Data. SIAM Journal on Numerical Analysis, 2008, 46, 1554-1579.	1.1	39
11	A Singular Limit Problem for Conservation Laws Related to the Camassa–Holm Shallow Water Equation. Communications in Partial Differential Equations, 2006, 31, 1253-1272.	1.0	37
12	Conservation Laws with Time Dependent Discontinuous Coefficients. SIAM Journal on Mathematical Analysis, 2005, 36, 1293-1309.	0.9	36
13	On the Attainable Set for Temple Class Systems with Boundary Controls. SIAM Journal on Control and Optimization, 2005, 43, 2166-2190.	1.1	34
14	Well-posedness results for the short pulse equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 1529-1557.	0.7	30
15	Dispersive and diffusive limits for Ostrovsky–Hunter type equations. Nonlinear Differential Equations and Applications, 2015, 22, 1733-1763.	0.4	30
16	Numerical methods for the nonlocal wave equation of the peridynamics. Applied Numerical Mathematics, 2020, 155, 119-139.	1.2	29
17	Stability of parabolic problems with nonlinear Wentzell boundary conditions. Journal of Differential Equations, 2009, 246, 2434-2447.	1.1	28
18	Initial–boundary value problems for conservation laws with source terms and the Degasperis–Procesi equation. Journal of Functional Analysis, 2009, 257, 3823-3857.	0.7	27

#	Article	IF	Citations
19	Vanishing Viscosity for Traffic on Networks. SIAM Journal on Mathematical Analysis, 2010, 42, 1761-1783.	0.9	26
20	Continuous dependence on the boundary conditions forÂtheÂWentzell Laplacian. Semigroup Forum, 2008, 77, 101-108.	0.3	25
21	Periodic solutions of the Degasperis–Procesi equation: Well-posedness and asymptotics. Journal of Functional Analysis, 2015, 268, 1053-1077.	0.7	23
22	Oleinik type estimates for the Ostrovsky–Hunter equation. Journal of Mathematical Analysis and Applications, 2015, 423, 162-190.	0.5	22
23	A Time-Dependent Optimal Harvesting Problem with Measure-Valued Solutions. SIAM Journal on Control and Optimization, 2017, 55, 913-935.	1.1	22
24	Wellposedness of a nonlinear peridynamic model. Nonlinearity, 2019, 32, 1-21.	0.6	22
25	Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8, 969-984.	0.5	21
26	A multiplicity result for the Schrodinger–Maxwell equations with negative potential. Annales Polonici Mathematici, 2002, 79, 21-30.	0.2	21
27	Stability estimates for parabolic problems with Wentzell boundary conditions. Journal of Differential Equations, 2008, 245, 2595-2626.	1.1	19
28	VISCOSITY SOLUTIONS OF HAMILTON–JACOBI EQUATIONS WITH DISCONTINUOUS COEFFICIENTS. Journal of Hyperbolic Differential Equations, 2007, 04, 771-795.	0.3	18
29	Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure and Applied Analysis, 2014, 13, 419-433.	0.4	18
30	On the solutions for an Ostrovsky type equation. Nonlinear Analysis: Real World Applications, 2020, 55, 103141.	0.9	18
31	Well-posedness of the Ostrovsky–Hunter Equation under the combined effects of dissipation and short-wave dispersion. Journal of Evolution Equations, 2016, 16, 365-389.	0.6	17
32	Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37, 5913-5942.	0.5	17
33	Convergence of an Engquist-Osher scheme for a multi-dimensional triangular system of conservation laws. Mathematics of Computation, 2010, 79, 71-71.	1.1	16
34	A Multidimensional Optimal-Harvesting Problem with Measure-Valued Solutions. SIAM Journal on Control and Optimization, $2013, 51, 1186-1202$.	1.1	16
35	Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media. Computational Geosciences, 2014, 18, 637-659.	1.2	16
36	Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky–Hunter equation. Journal of Hyperbolic Differential Equations, 2015, 12, 221-248.	0.3	16

#	Article	IF	CITATIONS
37	Singularity Formation in Fractional Burgers' Equations. Journal of Nonlinear Science, 2020, 30, 1285-1305.	1.0	16
38	Stability of solutions of quasilinear parabolic equations. Journal of Mathematical Analysis and Applications, 2005, 308, 221-239.	0.5	15
39	Analytic Solutions and Singularity Formation for the Peakon b-Family Equations. Acta Applicandae Mathematicae, 2012, 122, 419.	0.5	15
40	A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain. BIT Numerical Mathematics, 2017, 57, 93-122.	1.0	15
41	Well-posedness and Dispersive/Diffusive Limit of a Generalized Ostrovsky–Hunter Equation. Milan Journal of Mathematics, 2018, 86, 31-51.	0.7	15
42	A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2015, 36, 2981-2990.	0.5	15
43	Convergence of the Kuramoto–Sinelshchikov Equation to the Burgers One. Acta Applicandae Mathematicae, 2016, 145, 89-113.	0.5	14
44	Stability estimates for nonlinear hyperbolic problems with nonlinear Wentzell boundary conditions. Zeitschrift Fur Angewandte Mathematik Und Physik, 2013, 64, 733-753.	0.7	13
45	Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation. Bolletino Dell Unione Matematica Italiana, 2015, 8, 31-44.	0.6	13
46	CONVERGENCE OF THE SOLUTIONS ON THE GENERALIZED KORTEWEG–DE VRIES EQUATIONâ^—. Mathematica Modelling and Analysis, 2016, 21, 239-259.	al 0.7	13
47	On a Model for the Evolution of Morphogens in a Growing Tissue. SIAM Journal on Mathematical Analysis, 2016, 48, 1575-1615. On a model for the evolution of morphogens in growing tissue III: <mml:math< td=""><td>0.9</td><td>12</td></mml:math<>	0.9	12
48	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mi>\int /mml:mi><mml:mo><</mml:mo><mml:mi mathvariant="normal">log</mml:mi><mml:mo>aq</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mo></mml:mo><</mml:mi>	1.1	12
49	Journal of Differential Equations, 2017, 263, 1079-1124. Well-Posedness Results for the Continuum Spectrum Pulse Equation. Mathematics, 2019, 7, 1006.	1.1	12
50	On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms, 2020, 13, 77.	1.2	12
51	On a Dirichlet problem in bounded domains with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33, 4923-4944.	0.5	12
52	A singular limit problem for conservation laws related to the Kawahara equation. Bulletin Des Sciences Mathematiques, 2016, 140, 303-338.	0.5	11
53	A Singular Limit Problem for the Rosenau–Korteweg-de Vries-Regularized Long Wave and Rosenau-regularized Long Wave Equations. Advanced Nonlinear Studies, 2016, 16, 421-437.	0.7	11
54	Convergence results related to the modified Kawahara equation. Bolletino Dell Unione Matematica Italiana, 2016, 8, 265-286.	0.6	11

#	Article	IF	CITATIONS
55	Nonlinear Waves in Adhesive Strings. SIAM Journal on Applied Mathematics, 2017, 77, 347-360.	0.8	11
56	Convergence of the regularized short pulse equation to the short pulse one. Mathematische Nachrichten, 2018, 291, 774-792.	0.4	11
57	On a salt fingers model. Nonlinear Analysis: Theory, Methods & Applications, 2018, 176, 100-116.	0.6	11
58	On the Well-Posedness of A High Order Convective Cahn-Hilliard Type Equations. Algorithms, 2020, 13, 170.	1.2	11
59	A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks and Heterogeneous Media, 2016, 11, 281-300.	0.5	11
60	A singular limit problem for conservation laws related to the Rosenau–Korteweg–de Vries equation. Journal Des Mathematiques Pures Et Appliquees, 2017, 107, 315-335.	0.8	10
61	Discontinuous solutions for the generalized short pulse equation. Evolution Equations and Control Theory, 2019, 8, 737-753.	0.7	10
62	Conservation laws with singular nonlocal sources. Journal of Differential Equations, 2011, 250, 3831-3858.	1.1	9
63	A note on the Camassa–Holm equation. Journal of Differential Equations, 2015, 259, 2158-2166.	1.1	9
64	On a model for the evolution of morphogens in a growing tissue II: $\$$ varvec{heta = log (2)} $\$$ \hat{l}_{s} = log (2) case. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	0.7	9
65	Adhesion and debonding in a model of elastic string. Computers and Mathematics With Applications, 2019, 78, 1897-1909.	1.4	9
66	Existence results for the Kudryashov–Sinelshchikov–Olver equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2021, 151, 425-450.	0.8	9
67	Well-posedness of the classical solutions for a Kawahara–Korteweg–de Vries-type equation. Journal of Evolution Equations, 2021, 21, 625-651.	0.6	9
68	On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation. Mathematics in Engineering, 2021, 3, 1-43.	0.5	9
69	On the convergence of the modified Rosenau and the modified Benjamin–Bona–Mahony equations. Computers and Mathematics With Applications, 2017, 74, 899-919.	1.4	8
70	A non-local ellipticâ€"hyperbolic system related to the short pulse equation. Nonlinear Analysis: Theory, Methods & Applications, 2020, 190, 111606.	0.6	8
71	A Note on the Solutions for a Higher-Order Convective Cahn–Hilliard-Type Equation. Mathematics, 2020, 8, 1835.	1.1	8
72	Singular limits with vanishing viscosity for nonlocal conservation laws. Nonlinear Analysis: Theory, Methods & Applications, 2021, 211, 112370.	0.6	8

#	Article	IF	CITATIONS
73	On the boundary controllability of first-order hyperbolic systems. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, e1955-e1966.	0.6	7
74	The Schrödinger–Maxwell system with Dirac mass. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2007, 24, 773-793.	0.7	7
75	Vanishing viscosity for mixed systems with moving boundaries. Journal of Functional Analysis, 2013, 264, 1664-1710.	0.7	7
76	On the well-posedness of the exp-Rabelo equation. Annali Di Matematica Pura Ed Applicata, 2016, 195, 923-933.	0.5	7
77	Well-posedness for a slow erosion model. Journal of Mathematical Analysis and Applications, 2017, 456, 337-355.	0.5	7
78	A mathematical model for piracy control through police response. Nonlinear Differential Equations and Applications, 2017, 24, 1.	0.4	7
79	Well-posedness of the classical solution for the Kuramto–Sivashinsky equation with anisotropy effects. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	0.7	7
80	Some Results on the Boundary Control of Systems of Conservation Laws. , 2003, , 255-264.		7
81	Discontinuous solutions for the short-pulse master mode-locking equation. AIMS Mathematics, 2019, 4, 437-462.	0.7	7
82	H1-perturbations of Smooth Solutions for a Weakly Dissipative Hyperelastic-rod Wave Equation. Mediterranean Journal of Mathematics, 2006, 3, 419-432.	0.4	6
83	A singular limit problem for the Kudryashov-Sinelshchikov equation. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2017, 97, 1020-1033.	0.9	6
84	Capsules Rheology in Carreau–Yasuda Fluids. Nanomaterials, 2020, 10, 2190.	1.9	6
85	Well-posedness result for the Kuramoto–Velarde equation. Bolletino Dell Unione Matematica Italiana, 2021, 14, 659-679.	0.6	6
86	A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37, 1247-1282.	0.5	6
87	Long time behavior of a model for the evolution of morphogens in a growing tissue. SN Partial Differential Equations and Applications, 2020, $1,1.$	0.3	5
88	Long time behavior of a model for the evolution of morphogens in a growing tissue II: <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i,</mml:mi><mml:mo><ml:mi>linebreak="goodbreak" linebreakstyle="after"><</ml:mi></mml:mo><mml:mi mathvariant="normal">log </mml:mi><mml:mo>af</mml:mo><mml:mo><mml:mn>2</mml:mn></mml:mo></mml:math> . Journal	1.1	5
89	of Differential Equations, 2021, 272, 1015-1049. Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One. Contemporary Mathematics, 0, , .	0.4	5
90	Qualitative Aspects in Nonlocal Dynamics. Journal of Peridynamics and Nonlocal Modeling, 2023, 5, 1-19.	1.4	5

#	Article	IF	Citations
91	A Convergent Difference Scheme for a Class of Partial Integro-Differential Equations Modeling Pricing under Uncertainty. SIAM Journal on Numerical Analysis, 2016, 54, 588-605.	1.1	4
92	A difference method for the McKean–Vlasov equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	0.7	4
93	On classical solutions for the fifthâ€order short pulse equation. Mathematical Methods in the Applied Sciences, 2021, 44, 8814-8837.	1.2	4
94	Stationary solutions for conservation laws with singular nonlocal sources. Journal of Differential Equations, 2010, 248, 229-251.	1.1	3
95	Vanishing Viscosity for Traffic on Networks with Degenerate Diffusivity. Mediterranean Journal of Mathematics, 2019, 16, 1.	0.4	3
96	Measure valued solutions for an optimal harvesting problem. Journal Des Mathematiques Pures Et Appliquees, 2020, 142, 204-228.	0.8	3
97	A PDE model for the spatial dynamics of a voles population structured in age. Nonlinear Analysis: Theory, Methods & Applications, 2020, 196, 111805.	0.6	3
98	H4-Solutions for the Olver–Benney equation. Annali Di Matematica Pura Ed Applicata, 2021, 200, 1893-1933.	0.5	3
99	\$\$H^1\$\$ solutions for a Kuramoto–Sinelshchikov–Cahn–Hilliard type equation. Ricerche Di Matematica, 0, , 1.	0.6	3
100	On the classical solutions for a Rosenau–Korteweg-deVries–Kawahara type equation. Asymptotic Analysis, 2022, 129, 51-73.	0.2	3
101	The initial-boundary-value problem for an Ostrovsky–Hunter type equation. , 0, , 97-109.		3
102	Waves in Flexural Beams with Nonlinear Adhesive Interaction. Milan Journal of Mathematics, 2021, 89, 329-344.	0.7	3
103	The Gardner Equation in Elastodynamics. SIAM Journal on Applied Mathematics, 2021, 81, 2346-2361.	0.8	3
104	Up-wind difference approximation and singularity formation for a slow erosion model. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54, 465-492.	0.8	2
105	Regularity and energy transfer for a nonlinear beam equation. Applied Mathematics Letters, 2021, 115, 106959.	1.5	2
106	Global Weak Solutions for a Shallow Water Equation. , 2008, , 389-396.		2
107	Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete and Continuous Dynamical Systems, 2008, 22, 885-907.	0.5	2
108	Optimal strategies for a time-dependent harvesting problem. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 865-900.	0.6	2

#	Article	IF	Citations
109	A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation. Discrete and Continuous Dynamical Systems - Series S, 2018, .	0.6	2
110	An interior estimate for a nonlinear parabolic equation. Journal of Mathematical Analysis and Applications, 2003, 284, 49-63.	0.5	1
111	A note on convergence of the solutions of Benjamin–Bona–Mahony type equations. Nonlinear Analysis: Real World Applications, 2018, 40, 64-81.	0.9	1
112	H1-Solutions for the Hele-Shaw Equation. Vietnam Journal of Mathematics, 2021, 49, 673-683.	0.4	1
113	An hyperbolic-parabolic predator-prey model involving a vole population structured in age. Journal of Mathematical Analysis and Applications, 2021, 502, 125232.	0.5	1
114	Ground states of the SchrĶdinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27, 117-132.	0.5	1
115	Discontinuous solutions for the Degasperis-Procesi equation. , 2007, , .		1
116	A singular limit problem for the Ibragimov-Shabat equation. Discrete and Continuous Dynamical Systems - Series S, 2016, 9, 661-673.	0.6	1
117	On the solutions for a Benney-Lin type equation. Discrete and Continuous Dynamical Systems - Series B, 2022, .	0.5	1
118	Hamiltonian Approximation of Entropy Solutions of the Burgers Equation. Series in Contemporary Applied Mathematics, 2012, , 160-171.	0.8	0
119	A note on positive solutions for conservation laws with singular source. Proceedings of the American Mathematical Society, 2012, 141, 1613-1625.	0.4	0
120	A convergent finite difference scheme for the variational heat equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	0.7	0
121	Well-posedness of the Initial Value Problem for the Ostrovsky–Hunter Equation with Spatially Dependent Flux. Milan Journal of Mathematics, 2019, 87, 283-301.	0.7	0
122	Singular diffusion with Neumann boundary conditions. Nonlinearity, 2021, 34, 1633-1662.	0.6	0
123	Singularity Formation in the Inviscid Burgers Equation. Symmetry, 2021, 13, 848.	1.1	0
124	A SEMIGROUP OF SOLUTIONS FOR THE DEGASPERIS-PROCESI EQUATION. , 2006, , .		0
125	Existence of Global Weak Solutions to a Generalized Hyperelastic-Rod Wave Equation with Source. Springer INdAM Series, 2014, , 23-47.	0.4	0
126	Smoothing Effect of Degenerate Diffusion. Acta Applicandae Mathematicae, 2021, 171, 1.	0.5	0