Paul A Rosenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4877916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excitatory Amino Acids as a Final Common Pathway for Neurologic Disorders. New England Journal of Medicine, 1994, 330, 613-622.	27.0	2,500
2	Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8514-8519.	7.1	912
3	Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models. Journal of the American Chemical Society, 2014, 136, 4551-4556.	13.7	738
4	The Toll-Like Receptor TLR4 Is Necessary for Lipopolysaccharide-Induced Oligodendrocyte Injury in the CNS. Journal of Neuroscience, 2002, 22, 2478-2486.	3.6	587
5	Maturation-Dependent Vulnerability of Oligodendrocytes to Oxidative Stress-Induced Death Caused by Glutathione Depletion. Journal of Neuroscience, 1998, 18, 6241-6253.	3.6	544
6	Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. Journal of Neuroscience, 1993, 13, 1441-1453.	3.6	506
7	Effect of Citalopram on Agitation in Alzheimer Disease. JAMA - Journal of the American Medical Association, 2014, 311, 682.	7.4	447
8	Nitrosative and Oxidative Injury to Premyelinating Oligodendrocytes in Periventricular Leukomalacia. Journal of Neuropathology and Experimental Neurology, 2003, 62, 441-450.	1.7	408
9	Afferent connections of the perirhinal cortex in the rat. Journal of Comparative Neurology, 1983, 220, 168-190.	1.6	397
10	Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neuroscience Letters, 1989, 103, 162-168.	2.1	379
11	NBQX Attenuates Excitotoxic Injury in Developing White Matter. Journal of Neuroscience, 2000, 20, 9235-9241.	3.6	368
12	Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9936-9941.	7.1	331
13	The developing oligodendrocyte: key cellular target in brain injury in the premature infant. International Journal of Developmental Neuroscience, 2011, 29, 423-440.	1.6	321
14	Glutamate Receptor-Mediated Oligodendrocyte Toxicity in Periventricular Leukomalacia: A Protective Role for Topiramate. Journal of Neuroscience, 2004, 24, 4412-4420.	3.6	290
15	Conditional Deletion of the Glutamate Transporter GLT-1 Reveals That Astrocytic GLT-1 Protects against Fatal Epilepsy While Neuronal GLT-1 Contributes Significantly to Glutamate Uptake into Synaptosomes. Journal of Neuroscience, 2015, 35, 5187-5201.	3.6	249
16	Glutathione Peroxidase-Catalase Cooperativity Is Required for Resistance to Hydrogen Peroxide by Mature Rat Oligodendrocytes. Journal of Neuroscience, 2004, 24, 1531-1540.	3.6	245
17	The Glutamate Transporter GLT1a Is Expressed in Excitatory Axon Terminals of Mature Hippocampal Neurons. Journal of Neuroscience, 2004, 24, 1136-1148.	3.6	240
18	Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. Journal of Neuroscience. 1992. 12. 56-61.	3.6	239

#	Article	IF	CITATIONS
19	Cell and fiber type distribution of dystrophin. Neuron, 1988, 1, 411-420.	8.1	210
20	Catecholamine toxicity in cerebral cortex in dissociated cell culture. Journal of Neuroscience, 1988, 8, 2887-2894.	3.6	208
21	Novel Role of Vitamin K in Preventing Oxidative Injury to Developing Oligodendrocytes and Neurons. Journal of Neuroscience, 2003, 23, 5816-5826.	3.6	202
22	Expression of a Variant Form of the Glutamate Transporter GLT1 in Neuronal Cultures and in Neurons and Astrocytes in the Rat Brain. Journal of Neuroscience, 2002, 22, 2142-2152.	3.6	193
23	Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6801-6806.	7.1	186
24	Peroxynitrite-Induced Neuronal Apoptosis Is Mediated by Intracellular Zinc Release and 12-Lipoxygenase Activation. Journal of Neuroscience, 2004, 24, 10616-10627.	3.6	169
25	Pathophysiology of glia in perinatal white matter injury. Glia, 2014, 62, 1790-1815.	4.9	169
26	Apathy associated with neurocognitive disorders: Recent progress and future directions. Alzheimer's and Dementia, 2017, 13, 84-100.	0.8	167
27	Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7751-7756.	7.1	161
28	Hyperoxia Causes Maturation-Dependent Cell Death in the Developing White Matter. Journal of Neuroscience, 2008, 28, 1236-1245.	3.6	161
29	Water permeability of gramicidin A-treated lipid bilayer membranes Journal of General Physiology, 1978, 72, 341-350.	1.9	149
30	Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes Journal of General Physiology, 1978, 72, 327-340.	1.9	148
31	Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 2021, 196, 108719.	4.1	145
32	Ceftriaxone Treatment after Traumatic Brain Injury Restores Expression of the Glutamate Transporter, GLT-1, Reduces Regional Gliosis, and Reduces Post-Traumatic Seizures in the Rat. Journal of Neurotrauma, 2013, 30, 1434-1441.	3.4	142
33	Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. Journal of Neuroscience Research, 2003, 71, 237-245.	2.9	130
34	Tumor Necrosis Factor α Mediates Lipopolysaccharide-Induced Microglial Toxicity to Developing Oligodendrocytes When Astrocytes Are Present. Journal of Neuroscience, 2008, 28, 5321-5330.	3.6	119
35	Developmental Lag in Superoxide Dismutases Relative to Other Antioxidant Enzymes in Premyelinated Human Telencephalic White Matter. Journal of Neuropathology and Experimental Neurology, 2004, 63, 990-999.	1.7	118
36	Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3568-3573.	7.1	115

#	Article	IF	CITATIONS
37	Cystine Deprivation Induces Oligodendroglial Death: Rescue by Free Radical Scavengers and by a Diffusible Clial Factor. Journal of Neurochemistry, 1996, 67, 566-573.	3.9	114
38	Nitric oxideâ€induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosisâ€inducing factor translocation. European Journal of Neuroscience, 2004, 20, 1713-1726.	2.6	111
39	Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E209-E218.	7.1	111
40	Expression of cGMP-Specific Phosphodiesterase 9A mRNA in the Rat Brain. Journal of Neuroscience, 2001, 21, 9068-9076.	3.6	106
41	Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamine. Glia, 1991, 4, 91-100.	4.9	97
42	Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. Journal of Comparative Neurology, 2005, 492, 78-89.	1.6	96
43	GLT-1: The elusive presynaptic glutamate transporter. Neurochemistry International, 2016, 98, 19-28.	3.8	95
44	Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer's Coordinating Centers volunteers. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 333-339.	2.4	95
45	Axon Outgrowth Is Regulated by an Intracellular Purine-sensitive Mechanism in Retinal Ganglion Cells. Journal of Biological Chemistry, 1998, 273, 29626-29634.	3.4	90
46	NMDA Receptor Activation Inhibits Neuronal Volume Regulation after Swelling Induced by Veratridine-Stimulated Na+Influx in Rat Cortical Cultures. Journal of Neuroscience, 1996, 16, 7447-7457.	3.6	89
47	12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes. European Journal of Neuroscience, 2004, 20, 2049-2058.	2.6	89
48	Depressive Symptoms Predict Incident Cognitive Impairment in Cognitive Healthy Older Women. American Journal of Geriatric Psychiatry, 2010, 18, 204-211.	1.2	87
49	Beta-adrenergic receptor-mediated regulation of extracellular adenosine in cerebral cortex in culture. Journal of Neuroscience, 1994, 14, 2953-2965.	3.6	86
50	Estradiol attenuates hyperoxiaâ€induced cell death in the developing white matter. Annals of Neurology, 2007, 61, 562-573.	5.3	83
51	Vitamin K prevents oxidative cell death by inhibiting activation of 12â€lipoxygenase in developing oligodendrocytes. Journal of Neuroscience Research, 2009, 87, 1997-2005.	2.9	83
52	Characterization of brain ecto-apyrase: evidence for only one ecto-apyrase (CD39) gene. Molecular Brain Research, 1997, 47, 295-302.	2.3	81
53	Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site. Journal of Neuroscience, 1992, 12, 2362-2369.	3.6	78
54	17βâ€estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. Journal of Neuroscience Research, 2009, 87, 2078-2086.	2.9	78

#	Article	IF	CITATIONS
55	Intracellular Redox State Determines Whether Nitric Oxide Is Toxic or Protective to Rat Oligodendrocytes in Culture. Journal of Neurochemistry, 1999, 73, 476-484.	3.9	76
56	Nitric oxide production in the basal forebrain is required for recovery sleep. Journal of Neurochemistry, 2006, 99, 483-498.	3.9	76
57	A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. Journal of Neuroscience Methods, 1999, 91, 47-54.	2.5	75
58	NMDA and Glutamate Evoke Excitotoxicity at Distinct Cellular Locations in Rat Cortical Neurons <i>In Vitro</i> . Journal of Neuroscience, 2000, 20, 8831-8837.	3.6	75
59	Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. European Journal of Neuroscience, 2004, 20, 29-40.	2.6	75
60	Intracellular Zinc Release, 12-Lipoxygenase Activation and MAPK Dependent Neuronal and Oligodendroglial Death. Molecular Medicine, 2007, 13, 350-355.	4.4	75
61	Extracellular cAMP accumulation and degradation in rat cerebral cortex in dissociated cell culture. Journal of Neuroscience, 1989, 9, 2654-2663.	3.6	74
62	Novel lipoxygenase inhibitors as neuroprotective reagents. Journal of Neuroscience Research, 2008, 86, 904-909.	2.9	73
63	High Affinity Glutamate Transport in Rat Cortical Neurons in Culture. Molecular Pharmacology, 1998, 53, 88-96.	2.3	72
64	Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by Î ² -adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Brain Research, 1995, 692, 227-232.	2.2	71
65	Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. European Journal of Neuroscience, 2006, 24, 1443-1456.	2.6	68
66	Intracellular Zinc Release and ERK Phosphorylation Are Required Upstream of 12-Lipoxygenase Activation in Peroxynitrite Toxicity to Mature Rat Oligodendrocytes. Journal of Biological Chemistry, 2006, 281, 9460-9470.	3.4	67
67	The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic/ischemic brain injury. Neuroscience, 1994, 62, 399-406.	2.3	66
68	The Glutamate Transport Inhibitor L-trans-pyrrolidine-2,4-dicarboxylate Indirectly Evokes NMDA Receptor Mediated Neurotoxicity in Rat Cortical Cultures. European Journal of Neuroscience, 1996, 8, 1840-1852.	2.6	65
69	Nitric Oxide-Stimulated Increase in Extracellular Adenosine Accumulation in Rat Forebrain Neurons in Culture Is Associated with ATP Hydrolysis and Inhibition of Adenosine Kinase Activity. Journal of Neuroscience, 2000, 20, 6294-6301.	3.6	64
70	The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. Journal of Comparative Neurology, 2007, 501, 879-890.	1.6	64
71	Regulation of Glutamate Transport in Developing Rat Oligodendrocytes. Journal of Neuroscience, 2009, 29, 7898-7908.	3.6	63
72	NMDA Receptorâ€Mediated Neurotoxicity: A Paradoxical Requirement for Extracellular Mg ²⁺ in Na ⁺ /Ca ²⁺ â€Free Solutions in Rat Cortical Neurons In Vitro. Journal of Neurochemistry, 1997, 68, 1836-1845.	3.9	62

#	Article	IF	CITATIONS
73	The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience, 2014, 276, 216-238.	2.3	62
74	Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Experimental Neurology, 2018, 300, 22-29.	4.1	62
75	Reprint of "The developing oligodendrocyte: key cellular target in brain injury in the premature infant― International Journal of Developmental Neuroscience, 2011, 29, 565-582.	1.6	61
76	Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer's molecular signatures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21800-21811.	7.1	56
77	Ventral tegmental area astrocytes orchestrate avoidance and approach behavior. Nature Communications, 2019, 10, 1455.	12.8	55
78	Novel Role for the NMDA Receptor Redox Modulatory Site in the Pathophysiology of Seizures. Journal of Neuroscience, 2000, 20, 2409-2417.	3.6	54
79	Multifactor Behavioral Treatment of Chronic Sleep-Onset Insomnia Using Stimulus Control and the Relaxation Response. Behavior Modification, 1993, 17, 498-509.	1.6	51
80	Oligodendrocyte excitotoxicity determined by local glutamate accumulation and mitochondrial function. Journal of Neurochemistry, 2006, 98, 213-222.	3.9	51
81	Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1. European Journal of Neuroscience, 2008, 27, 66-82.	2.6	51
82	2,4,5-trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4865-4869.	7.1	50
83	The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation. European Journal of Neuroscience, 2002, 16, 1015-1024.	2.6	48
84	Changes in QTc Interval in the Citalopram for Agitation in Alzheimer's Disease (CitAD) Randomized Trial. PLoS ONE, 2014, 9, e98426.	2.5	48
85	Citalopram for agitation in Alzheimer's disease: Design and methods. Alzheimer's and Dementia, 2012, 8, 121-130.	0.8	45
86	Deletion of Neuronal GLT-1 in Mice Reveals Its Role in Synaptic Glutamate Homeostasis and Mitochondrial Function. Journal of Neuroscience, 2019, 39, 4847-4863.	3.6	42
87	Decreased expression of <scp>GLT</scp> â€1 in the R6/2 model of Huntington's disease does not worsen disease progression. European Journal of Neuroscience, 2013, 38, 2477-2490.	2.6	41
88	Effects of norepinephrine on rat neocortical neurons in dissociated cell culture. Brain Research, 1985, 344, 369-372.	2.2	39
89	Dihydrokainate-sensitive neuronal glutamate transport is required for protection of rat cortical neurons in culture against synaptically released glutamate. European Journal of Neuroscience, 1998, 10, 2523-2531.	2.6	39
90	Differential expression of glutamate receptor subtypes in human brainstem sites involved in perinatal hypoxia-ischemia. Journal of Comparative Neurology, 2000, 427, 196-208.	1.6	39

#	Article	IF	CITATIONS
91	Neuronal injury evoked by depolarizing agents in rat cortical cultures. Neuroscience, 1992, 51, 931-939.	2.3	36
92	Chromis-1, a Ratiometric Fluorescent Probe Optimized for Two-Photon Microscopy Reveals Dynamic Changes in Labile Zn(II) in Differentiating Oligodendrocytes. ACS Sensors, 2018, 3, 458-467.	7.8	36
93	A small subset of cortical astrocytes in culture accumulates glycogen. International Journal of Developmental Neuroscience, 1987, 5, 227-235.	1.6	35
94	Localization of synapses in rat cortical cultures. Neuroscience, 1993, 53, 495-508.	2.3	35
95	A 3,4-dihydroxyphenylalanine oxidation product is a glutamatergic agonist in rat cortical neurons. Neuroscience Letters, 1990, 116, 168-171.	2.1	34
96	Glutamate transporter EAAT2 expression is upâ€regulated in reactive astrocytes in human periventricular leukomalacia. Journal of Comparative Neurology, 2008, 508, 238-248.	1.6	34
97	Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. Journal of Comparative Neurology, 2012, 520, 3912-3932.	1.6	34
98	Further evidence that pyrroloquinoline quinone interacts with the receptor redox site in rat cortical neurons in vitro. Neuroscience Letters, 1994, 168, 189-192.	2.1	30
99	α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionate Receptor Subunit Composition and cAMP-response Element-binding Protein Regulate Oligodendrocyte Excitotoxicity. Journal of Biological Chemistry, 2006, 281, 36004-36011.	3.4	30
100	Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cellular and Molecular Life Sciences, 2020, 77, 3085-3102.	5.4	30
101	Escitalopram for agitation in Alzheimer's disease (Sâ€CitAD): Methods and design of an investigatorâ€initiated, randomized, controlled, multicenter clinical trial. Alzheimer's and Dementia, 2019, 15, 1427-1436.	0.8	28
102	Clinical heterogeneity associated with KCNA1 mutations include cataplexy and nonataxic presentations. Neurogenetics, 2016, 17, 11-16.	1.4	26
103	Glycogen accumulation in rat cerebral cortex in dissociated cell culture. Journal of Neuroscience Methods, 1985, 15, 101-112.	2.5	25
104	Functional significance of cyclic AMP secretion in cerebral cortex. Brain Research Bulletin, 1992, 29, 315-318.	3.0	25
105	Forskolin evokes extracellular adenosine accumulation in rat cortical cultures. Neuroscience Letters, 1996, 211, 49-52.	2.1	25
106	Chapter 5 Why is the role of nitric oxide in NMDA receptor function and dysfunction so controversial?. Progress in Brain Research, 1998, 118, 53-71.	1.4	25
107	Caspase-1 and poly (ADP-ribose) polymerase inhibitors may protect against peroxynitrite-induced neurotoxicity independent of their enzyme inhibitor activity. European Journal of Neuroscience, 2004, 20, 1727-1736.	2.6	25
108	Dysregulation of system xcâ^' expression induced by mutant huntingtin in a striatal neuronal cell line and in R6/2 mice. Neurochemistry International, 2014, 76, 59-69.	3.8	25

#	Article	IF	CITATIONS
109	RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. International Journal of Physiology, Pathophysiology and Pharmacology, 2010, 2, 137-47.	0.8	25
110	Extracellular Synthesis of cADP-Ribose from Nicotinamide-Adenine Dinucleotide by Rat Cortical Astrocytes in Culture. Journal of Neuroscience, 1996, 16, 5372-5381.	3.6	24
111	Ironâ€Mediated Oxidation of 3,4â€Dihydroxyphenylalanine to an Excitotoxin. Journal of Neurochemistry, 1995, 64, 1742-1748.	3.9	24
112	Recurrent SLC1A2 variants cause epilepsy via a dominant negative mechanism. Annals of Neurology, 2019, 85, 921-926.	5.3	23
113	TOPA quinone, a kainate-like agonist and excitotoxin is generated by a catecholaminergic cell line. Journal of Neuroscience, 1995, 15, 3172-3177.	3.6	22
114	Change in agitation in Alzheimer's disease in the placebo arm of a nine-week controlled trial. International Psychogeriatrics, 2015, 27, 2059-2067.	1.0	22
115	Glutathione prevents 2,4,5-trihydroxyphenylalanine excitotoxicity by maintaining it in a reduced, non-active form. Neuroscience Letters, 1992, 144, 233-236.	2.1	21
116	Nonenzymatic Conversion of 3,4-Dihydroxyphenylalanine to 2,4,5-Trihydroxyphenylalanine and 2,4,5-Trihydroxyphenylalanine Quinone in Physiological Solutions. Journal of Neurochemistry, 1993, 61, 911-920.	3.9	21
117	Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochemistry International, 2021, 144, 104896.	3.8	20
118	Vasoactive intestinal peptide regulates extracellular adenosine levels in rat cortical cultures. Neuroscience Letters, 1995, 200, 93-96.	2.1	19
119	Comparison of the Potency of Competitive NMDA Antagonists Against the Neurotoxicity of Glutamate and NMDA. Journal of Neurochemistry, 2002, 63, 879-885.	3.9	19
120	Zinc homeostasis and zinc signaling in white matter development and injury. Neuroscience Letters, 2019, 707, 134247.	2.1	19
121	NMDA receptor-mediated extracellular adenosine accumulation in rat forebrain neurons in culture is associated with inhibition of adenosine kinase. European Journal of Neuroscience, 2003, 17, 1213-1222.	2.6	17
122	Huntington's disease pattern of transcriptional dysregulation in the absence of mutant huntingtin is produced by knockout of neuronal GLT-1. Neurochemistry International, 2019, 123, 85-94.	3.8	17
123	Conditional Knockout of GLT-1 in Neurons Leads to Alterations in Aspartate Homeostasis and Synaptic Mitochondrial Metabolism in Striatum and Hippocampus. Neurochemical Research, 2020, 45, 1420-1437.	3.3	17
124	Behavioral phenotyping and dopamine dynamics in mice with conditional deletion of the glutamate transporter GLT-1 in neurons: resistance to the acute locomotor effects of amphetamine. Psychopharmacology, 2018, 235, 1371-1387.	3.1	15
125	Elevation of intracellular cAMP evokes activity-dependent release of adenosine in cultured rat forebrain neurons. European Journal of Neuroscience, 2004, 19, 2669-2681.	2.6	14
126	Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic GMP independent. European Journal of Neuroscience, 2006, 24, 2471-2480.	2.6	12

#	Article	IF	CITATIONS
127	Glutamate transporter expression and function in a striatal neuronal model of Huntington's disease. Neurochemistry International, 2013, 62, 973-981.	3.8	11
128	The Redox Biology of Excitotoxic Processes: The NMDA Receptor, TOPA Quinone, and the Oxidative Liberation of Intracellular Zinc. Frontiers in Neuroscience, 2020, 14, 778.	2.8	10
129	Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Frontiers in Cellular Neuroscience, 2021, 15, 666798.	3.7	10
130	Biomarkers for Alzheimer's disease: ready for the next step. Brain, 2009, 132, 2002-2004.	7.6	7
131	NMDA receptor-mediated extracellular adenosine accumulation is blocked by phosphatase 1/2A inhibitors. Brain Research, 2007, 1155, 116-124.	2.2	5
132	Zaprinast stimulates extracellular adenosine accumulation in rat pontine slices. Neuroscience Letters, 2004, 371, 12-17.	2.1	4
133	Principal components analysis of agitation outcomes in Alzheimer's disease. Journal of Psychiatric Research, 2016, 79, 4-7.	3.1	4
134	Characterizing Highly Benefited Patients in Randomized Clinical Trials. International Journal of Biostatistics, 2017, 13, .	0.7	4
135	Box I and II motif from myelin basic protein gene promoter binds to nuclear proteins from rodent brain. Journal of Molecular Neuroscience, 1994, 5, 27-37.	2.3	3
136	Evidence for change in current–flux coupling of GLT1 at high glutamate concentrations in rat primary forebrain neurons and GLT1aâ€expressing COSâ€7 cells. European Journal of Neuroscience, 2009, 30, 186-195.	2.6	3
137	Potential therapeutic intervention following hypoxic-ischemic insult. , 1997, 3, 76-84.		2
138	GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate. PLoS ONE, 2015, 10, e0136111.	2.5	2
139	The Potential of Actigraphy to Assess Agitation in Dementia. American Journal of Geriatric Psychiatry, 2019, 27, 870-872.	1.2	2
140	Deletion of the Sodium-Dependent Glutamate Transporter GLT-1 in Maturing Oligodendrocytes Attenuates Myelination of Callosal Axons During a Postnatal Phase of Central Nervous System Development. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	2
141	Dihydrokainate-sensitive neuronal glutamate transport is required for protection of rat cortical neurons in culture against synaptically released glutamate. European Journal of Neuroscience, 1998, 10, 2523-2531.	2.6	1
142	Glutamate receptors, transporters and periventricular leukomalacia. , 0, , 186-201.		0
143	New Clues to Preclinical Alzheimer's Disease. American Journal of Psychiatry, 2018, 175, 493-494.	7.2	0
144	Mechanisms Underlying the Selective Vulnerability of Developing Human White Matter. , 2014, , 109-141.		0

9