Vincent M Rotello

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4877629/vincent-m-rotello-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

181 388 35,411 90 h-index g-index citations papers 646 10.2 39,573 7.57 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
388	Direct Cytosolic Delivery of Proteins Using Lyophilized and Reconstituted Polymer-Protein Assemblies <i>Pharmaceutical Research</i> , 2022 , 1	4.5	Ο
387	Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. <i>Nature Nanotechnology</i> , 2021 ,	28.7	13
386	Nanomaterial-based bioorthogonal nanozymes for biological applications. <i>Chemical Society Reviews</i> , 2021 ,	58.5	15
385	Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. <i>Materials Horizons</i> , 2021 , 8, 3424-3431	14.4	2
384	Protein-Based Films as Antifouling and Drug-Eluting Antimicrobial Coatings for Medical Implants. <i>ACS Applied Materials & Drug - Interfaces</i> , 2021 , 13, 48301-48307	9.5	О
383	Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture. <i>Journal of the American Chemical Society</i> , 2021 , 143, 4758-4765	16.4	11
382	Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers. <i>ACS Nano</i> , 2021 , 15, 6562-6572	16.7	7
381	Protein Delivery: If Your GFP (or Other Small Protein) Is in the Cytosol, It Will Also Be in the Nucleus. <i>Bioconjugate Chemistry</i> , 2021 , 32, 891-896	6.3	6
380	Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. <i>Nanomaterials</i> , 2021 , 11,	5.4	4
379	Antimicrobial Peptide-Loaded Pectolite Nanorods for Enhancing Wound-Healing and Biocidal Activity of Titanium. <i>ACS Applied Materials & Discrete Supplied Ma</i>	9.5	8
378	Strategies for Fabricating Protein Films for Biomaterials Applications. <i>Advanced Sustainable Systems</i> , 2021 , 5,	5.9	7
377	Activity of Biodegradable Polymeric Nanosponges against Dual-Species Bacterial Biofilms. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1780-1786	5.5	4
376	Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001627	10.1	7
375	Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. <i>Nature Reviews Microbiology</i> , 2021 , 19, 23-36	22.2	151
374	Nanodelivery vehicles induce remote biochemical changes in vivo. <i>Nanoscale</i> , 2021 , 13, 12623-12633	7.7	3
373	Hypersound-Assisted Size Sorting of Microparticles on Inkjet-Patterned Protein Films. <i>Langmuir</i> , 2021 , 37, 2826-2832	4	1
372	Biodegradable Poly(lactic acid) Stabilized Nanoemulsions for the Treatment of Multidrug-Resistant Bacterial Biofilms. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 40325-40331	9.5	4

(2020-2021)

371	In situ activation of therapeutics through bioorthogonal catalysis. <i>Advanced Drug Delivery Reviews</i> , 2021 , 176, 113893	18.5	7
370	Generation of Antibiotics using Bioorthogonal "Nanofactories". <i>Microbiology Insights</i> , 2021 , 14, 11786.	36 12 19	974121
369	Efficient in vivo wound healing using noble metal nanoclusters. <i>Nanoscale</i> , 2021 , 13, 6531-6537	7.7	4
368	Nanotherapeutics using all-natural materials. Effective treatment of wound biofilm infections using crosslinked nanoemulsions. <i>Materials Horizons</i> , 2021 , 8, 1776-1782	14.4	6
367	Differentiation of Cancer Stem Cells through Nanoparticle Surface Engineering. <i>ACS Nano</i> , 2020 , 14, 15276-15285	16.7	13
366	Protection and Isolation of Bioorthogonal Metal Catalysts by Using Monolayer-Coated Nanozymes. <i>ChemBioChem</i> , 2020 , 21, 2759-2763	3.8	9
365	Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10723-10729	16.4	42
364	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	
363	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
362	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
361	Cytosolic Delivery of Functional Proteins through Tunable Gigahertz Acoustics. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied</i>	9.5	7
360	Intracellular Activation of Bioorthogonal Nanozymes through Endosomal Proteolysis of the Protein Corona. <i>ACS Nano</i> , 2020 , 14, 4767-4773	16.7	28
359	Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. <i>Advanced Drug Delivery Reviews</i> , 2020 , 156, 188-213	18.5	62
358	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. <i>Energy & Description</i> 2020, 34, 5107-5108	4.1	
357	Thermally Gated Bio-orthogonal Nanozymes with Supramolecularly Confined Porphyrin Catalysts for Antimicrobial Uses. <i>CheM</i> , 2020 , 6, 1113-1124	16.2	28
356	Direct Cytosolic Delivery of Proteins through Coengineering of Proteins and Polymeric Delivery Vehicles. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4349-4355	16.4	53
355	Rapid evaluation of gold nanoparticle-lipid membrane interactions using a lipid/polydiacetylene vesicle sensor. <i>Analyst, The</i> , 2020 , 145, 3049-3055	5	2
354	Fabrication of Collagen Films with Enhanced Mechanical and Enzymatic Stability through Thermal Treatment in Fluorous Media. <i>ACS Applied Materials & Discrete Stability</i> 12, 6590-6597	9.5	13

353	Nano Assessing Nano: Nanosensor-Enabled Detection of Cell Phenotypic Changes Identifies Nanoparticle Toxicological Effects at Ultra-Low Exposure Levels. <i>Small</i> , 2020 , 16, e2002084	11	1
352	A modified and simplified method for purification of gold nanoparticles. <i>MethodsX</i> , 2020 , 7, 100896	1.9	2
351	Functionalized Polymers Enhance Permeability of Antibiotics in Gram-negative MDR Bacteria and Biofilms for Synergistic Antimicrobial Therapy <i>Advanced Therapeutics</i> , 2020 , 3, 2000005	4.9	5
350	Update to Our Reader, Reviewer, and Author Communities April 2020. Organometallics, 2020, 39, 1665-	16,86	
349	Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200	1.7	
348	Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 9466-9480	7.3	5
347	Purification and separation of ultra-small metal nanoclusters. <i>Advances in Colloid and Interface Science</i> , 2020 , 276, 102090	14.3	11
346	Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies. <i>Biomaterials</i> , 2020 , 232, 119737	15.6	9
345	Dual Mass Spectrometric Tissue Imaging of Nanocarrier Distributions and Their Biochemical Effects. <i>Analytical Chemistry</i> , 2020 , 92, 2011-2018	7.8	11
344	Accessing Intracellular Targets through Nanocarrier-Mediated Cytosolic Protein Delivery. <i>Trends in Pharmacological Sciences</i> , 2020 , 41, 743-754	13.2	10
343	High-content and high-throughput identification of macrophage polarization phenotypes. <i>Chemical Science</i> , 2020 , 11, 8231-8239	9.4	8
342	Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 278	3 5 4- <u>2</u> 7	'8 ⁸ 1
341	Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. <i>Advanced Functional Materials</i> , 2020 , 30, 2004942	15.6	24
340	Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	63
339	In Vivo Editing of Macrophages through Systemic Delivery of CRISPR-Cas9-Ribonucleoprotein-Nanoparticle Nanoassemblies. <i>Advanced Therapeutics</i> , 2019 , 2, 190004	1 4·9	16
338	Simple and robust polymer-based sensor for rapid cancer detection using serum. <i>Chemical Communications</i> , 2019 , 55, 11458-11461	5.8	6
337	Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. <i>Theranostics</i> , 2019 , 9, 3280-3292	12.1	55
336	Advances in CRISPR/Cas9 Technology for in Vivo Translation. <i>Biological and Pharmaceutical Bulletin</i> , 2019 , 42, 304-311	2.3	3

335	Rapid Identification of Biofilms Using a Robust Multichannel Polymer Sensor Array. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 11202-11208	9.5	26
334	Bioorthogonal nanozymes: progress towards therapeutic applications. <i>Trends in Chemistry</i> , 2019 , 1, 90-9	98 4.8	35
333	Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. <i>ACS Symposium Series</i> , 2019 , 1-34	0.4	
332	Array-basierte Sensorik mit der Ehemischen Naselin der Diagnostik und Wirkstoffentdeckung. <i>Angewandte Chemie</i> , 2019 , 131, 5244-5255	3.6	6
331	Current trends and challenges in cancer management and therapy using designer nanomaterials. <i>Nano Convergence</i> , 2019 , 6, 23	9.2	260
330	Phytochemical-Based Nanocomposites for the Treatment of Bacterial Biofilms. <i>ACS Infectious Diseases</i> , 2019 , 5, 1590-1596	5.5	15
329	Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 184, 110522	6	17
328	Water-Dispersible and Biocompatible Iron Carbide Nanoparticles with High Specific Absorption Rate. <i>ACS Nano</i> , 2019 , 13, 2870-2878	16.7	29
327	Nanoparticles binding to lipid membranes: from vesicle-based gels to vesicle tubulation and destruction. <i>Nanoscale</i> , 2019 , 11, 18464-18474	7.7	19
326	Effective detection of bacteria using metal nanoclusters. <i>Nanoscale</i> , 2019 , 11, 22172-22181	7.7	25
325	Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 2814-2820	9.5	13
324	Tailored Functional Surfaces Using Nanoparticle and Protein "Nanobrick" Coatings. <i>Langmuir</i> , 2019 , 35, 10993-11006	4	5
323	Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 2019, 48, 415-4	25 8.5	389
322	Control of Intra- versus Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes. <i>ACS Nano</i> , 2019 , 13, 229-235	16.7	39
321	Array-based "Chemical Nose" Sensing in Diagnostics and Drug Discovery. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5190-5200	16.4	96
320	Translation of protein charge and hydrophilicity to materials surface properties using thermal treatment in fluorous media. <i>Materials Horizons</i> , 2018 , 5, 268-274	14.4	13
319	Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. Journal of the American Chemical Society, 2018 , 140, 2421-2425	16.4	15
318	Solubilization of Hydrophobic Catalysts Using Nanoparticle Hosts. <i>Small</i> , 2018 , 14, 1702198	11	15

317	CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. <i>Bioconjugate Chemistry</i> , 2018 , 29, 445-4	56 .3	57
316	Biodegradable Nanocomposite Antimicrobials for the Eradication of Multidrug-Resistant Bacterial Biofilms without Accumulated Resistance. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6176-61	8 ¹ 2 ^{6.4}	62
315	Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. <i>Chemical Society Reviews</i> , 2018 , 47, 3421-3432	58.5	106
314	Stable and oxidant responsive zwitterionic nanoclusters. <i>Nanoscale</i> , 2018 , 10, 7382-7386	7.7	9
313	NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 2725-2732	8.5	35
312	Triptycene as a Supramolecular Additive in PTB7:PCBM Blends and Its Influence on Photovoltaic Properties. <i>ACS Applied Materials & Discrete Section</i> , 10, 24665-24678	9.5	5
311	Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment. <i>Journal of Controlled Release</i> , 2018 , 283, 235-240	11.7	20
310	Chiral Plasmonic Fields Probe Structural Order of Biointerfaces. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8509-8517	16.4	40
309	Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections. <i>ACS Nano</i> , 2018 , 12, 89-94	16.7	93
308	Dual Functionalization of Nanoparticles for Generating Corona-Free and Noncytotoxic Silica Nanoparticles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41917-41923	9.5	24
307	Cationic Silver Nanoclusters as Potent Antimicrobials against Multidrug-Resistant Bacteria. <i>ACS Omega</i> , 2018 , 3, 16721-16727	3.9	34
306	Matrix-Incorporated Polydopamine Layer as a Simple, Efficient, and Universal Coating for Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 36361-36368	9.5	5
305	Dynamically crosslinked polymer nanocomposites to treat multidrug-resistant bacterial biofilms. <i>Nanoscale</i> , 2018 , 10, 18651-18656	7.7	13
304	Reversible Hierarchical Assembly of Trimeric Coiled-Coil Peptides into Banded Nano- and Microstructures. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13028-13033	16.4	17
303	Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12137-12143	16.4	79
302	Rapid phenotyping of cancer stem cells using multichannel nanosensor arrays. <i>Nanomedicine:</i> Nanotechnology, Biology, and Medicine, 2018 , 14, 1931-1939	6	16
301	A Rapid and Robust Diagnostic for Liver Fibrosis Using a Multichannel Polymer Sensor Array. <i>Advanced Materials</i> , 2018 , 30, e1800634	24	44
300	Cytocompatible Catalyst-Free Photodegradable Hydrogels for Light-Mediated RNA Release To Induce hMSC Osteogenesis. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 2011-2023	5.5	16

(2017-2017)

-	299	Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. <i>Analytical Chemistry</i> , 2017 , 89, 3009-3014	7.8	26
	298	Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. <i>ACS Nano</i> , 2017 , 11, 2452-2458	16.7	312
į	297	Programmed Self-Assembly of Hierarchical Nanostructures through Protein-Nanoparticle Coengineering. <i>ACS Nano</i> , 2017 , 11, 3456-3462	16.7	55
	296	Facile method to synthesize dopamine-capped mixed ferrite nanoparticles and their peroxidase-like activity. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 11LT02	3	18
	295	Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 1907-1914	5.7	14
:	294	In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges. <i>Bioconjugate Chemistry</i> , 2017 , 28, 880-884	6.3	129
	293	Fingerprinting antibiotics with PAE-based fluorescent sensor arrays. <i>Polymer Chemistry</i> , 2017 , 8, 2723-27	743	13
:	292	Sensing by Smell: Nanoparticle-Enzyme Sensors for Rapid and Sensitive Detection of Bacteria with Olfactory Output. <i>ACS Nano</i> , 2017 , 11, 5339-5343	16.7	30
:	291	Synthesis and characterisation of pushpull flavin dyes with efficient second harmonic generation (SHG) properties. <i>RSC Advances</i> , 2017 , 7, 24462-24469	3.7	23
	290	Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. <i>Nano Futures</i> , 2017 , 1, 015004	3.6	52
	289	General Strategy for Direct Cytosolic Protein Delivery via Protein-Nanoparticle Co-engineering. <i>ACS Nano</i> , 2017 , 11, 6416-6421	16.7	79
;	288	Active Targeting of the Nucleus Using Nonpeptidic Boronate Tags. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8547-8551	16.4	46
;	287	Cancer Cell Discrimination Using Host-Guest "Doubled" Arrays. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8008-8012	16.4	85
	286	Intracellular delivery of proteins by nanocarriers. <i>Nanomedicine</i> , 2017 , 12, 941-952	5.6	62
į	285	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381	16.7	714
	284	Development of Engineered Bacteriophages for Escherichia coli Detection and High-Throughput Antibiotic Resistance Determination. <i>ACS Sensors</i> , 2017 , 2, 484-489	9.2	28
;	283	Cross-Linked Polymer-Stabilized Nanocomposites for the Treatment of Bacterial Biofilms. <i>ACS Nano</i> , 2017 , 11, 946-952	16.7	58
:	282	Gradient and Patterned Protein Films Stabilized via Nanoimprint Lithography for Engineered Interactions with Cells. <i>ACS Applied Materials & Description</i> (2017), 19, 42-46	9.5	14

281	Integrating recognition elements with nanomaterials for bacteria sensing. <i>Chemical Society Reviews</i> , 2017 , 46, 1272-1283	58.5	193
280	Dopamine coated FeO nanoparticles as enzyme mimics for the sensitive detection of bacteria. <i>Chemical Communications</i> , 2017 , 53, 12306-12308	5.8	46
279	Modulating the Catalytic Activity of Enzyme-like Nanoparticles Through their Surface Functionalization. <i>Molecular Systems Design and Engineering</i> , 2017 , 2, 624-628	4.6	26
278	Effects of engineered nanoparticles on the innate immune system. <i>Seminars in Immunology</i> , 2017 , 34, 25-32	10.7	102
277	Tuning DNA Condensation with Zwitterionic Polyamidoamine (zPAMAM) Dendrimers. <i>Macromolecules</i> , 2017 , 50, 8202-8211	5.5	8
276	Cytosolic and Nuclear Delivery of CRISPR/Cas9-ribonucleoprotein for Gene Editing Using Arginine Functionalized Gold Nanoparticles. <i>Bio-protocol</i> , 2017 , 7,	0.9	18
275	Superchiral Plasmonic Phase Sensitivity for Fingerprinting of Protein Interface Structure. <i>ACS Nano</i> , 2017 , 11, 12049-12056	16.7	42
274	Multivalent Protein Recognition Using Synthetic Receptors 2017 , 229-261		
273	Challenges in Application of Langmuir Monolayer Studies To Determine the Mechanisms of Bactericidal Activity of Ruthenium Complexes. <i>Langmuir</i> , 2017 , 33, 14167-14174	4	9
272	Dual-Mode Mass Spectrometric Imaging for Determination of in Vivo Stability of Nanoparticle Monolayers. <i>ACS Nano</i> , 2017 , 11, 7424-7430	16.7	26
271	Rapid and ultrasensitive detection of endocrine disrupting chemicals using a nanosensor-enabled cell-based platform. <i>Chemical Communications</i> , 2017 , 53, 8794-8797	5.8	2
270	A layer-by-layer assembled MoS thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. <i>Nanoscale</i> , 2017 , 9, 10854-10860	7.7	19
269	A General Method for Intracellular Protein Delivery through 'E-tag' Protein Engineering and Arginine Functionalized Gold Nanoparticles. <i>Bio-protocol</i> , 2017 , 7,	0.9	2
268	Creation (and Recreation) of a Graduate Core Course in Chemistry. ACS Symposium Series, 2017, 91-96	0.4	
267	Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures. <i>Nano Letters</i> , 2016 , 16, 5806-14	11.5	44
266	Biocidal and Antifouling Chlorinated Protein Films. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1862-1866	5.5	12
265	Fully Zwitterionic Nanoparticle Antimicrobial Agents through Tuning of Core Size and Ligand Structure. <i>ACS Nano</i> , 2016 , 10, 8732-7	16.7	87
264	Reply to 'Measuring conductivity of living Geobacter sulfurreducens biofilms'. <i>Nature Nanotechnology</i> , 2016 , 11, 913-914	28.7	18

(2016-2016)

263	Colorimetric Detection of Escherichia coli Based on the Enzyme-Induced Metallization of Gold Nanorods. <i>Small</i> , 2016 , 12, 2469-75	11	108
262	Photocleavable Hydrogels for Light-Triggered siRNA Release. <i>Advanced Healthcare Materials</i> , 2016 , 5, 305-310	10.1	37
261	Light-triggered RNA release and induction of hMSC osteogenesis via photodegradable, dual-crosslinked hydrogels. <i>Nanomedicine</i> , 2016 , 11, 1535-50	5.6	27
260	Quantitative Differentiation of Cell Surface-Bound and Internalized Cationic Gold Nanoparticles Using Mass Spectrometry. <i>ACS Nano</i> , 2016 , 10, 6731-6	16.7	27
259	Synthesis and properties of pteridine-2,4-dione-functionalised oligothiophenes. <i>RSC Advances</i> , 2016 , 6, 7999-8005	3.7	1
258	Using the Power of Organic Synthesis for Engineering the Interactions of Nanoparticles with Biological Systems. <i>Nano Today</i> , 2016 , 11, 31-40	17.9	21
257	Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4522-9	16.4	98
256	Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. <i>Expert Opinion on Drug Delivery</i> , 2016 , 13, 547-59	8	55
255	Nanomaterials for the Treatment of Bacterial Biofilms. ACS Infectious Diseases, 2016, 2, 3-4	5.5	81
254	Nanoparticle-Based Antimicrobials: Surface Functionality is Critical. F1000Research, 2016, 5,	3.6	90
253	Organic chemistry meets polymers, nanoscience, therapeutics and diagnostics. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 1638-46	2.5	10
252	Chemically Engineered Nanoparticle-Protein Interface for Real-Time Cellular Oxidative Stress Monitoring. <i>Small</i> , 2016 , 12, 3775-9	11	15
251	Spatial control of chemical processes on nanostructures through nano-localized water heating. <i>Nature Communications</i> , 2016 , 7, 10946	17.4	32
250	Biochemical and biomechanical drivers of cancer cell metastasis, drug response and nanomedicine. <i>Drug Discovery Today</i> , 2016 , 21, 1489-1494	8.8	14
249	Externally controlled drug release using a gold nanorod contained composite membrane. <i>Nanoscale</i> , 2016 , 8, 11949-55	7.7	30
248	Ultrastable and Biofunctionalizable Gold Nanoparticles. <i>ACS Applied Materials & Discrete Section</i> 2016, 8, 14096-101	9.5	96
247	Modulation of Immune Response Using Engineered Nanoparticle Surfaces. Small, 2016 , 12, 76-82	11	50
246	Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. <i>ACS Nano</i> , 2016 , 10, 4421-30	16.7	197

245	Toward Virus-Like Surface Plasmon Strain Sensors. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 5896-906	3.4	6
244	Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). <i>Analyst, The</i> , 2016 , 141, 2418	s- 2 5	30
243	High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids. <i>ACS Nano</i> , 2016 , 10, 5293-303	16.7	51
242	Surface Charge Controls the Suborgan Biodistributions of Gold Nanoparticles. ACS Nano, 2016, 10, 5536	5 -49 .7	132
241	Nanoparticle-dendrimer hybrid nanocapsules for therapeutic delivery. <i>Nanomedicine</i> , 2016 , 11, 1571-8	5.6	19
240	Facile synthesis of cationic gold nanoparticles with controlled size and surface plasmon resonance. <i>RSC Advances</i> , 2016 , 6, 92007-92010	3.7	2
239	Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated and murine model systems. <i>CheM</i> , 2016 , 1, 320-327	16.2	27
238	Selectivity and Specificity: Pros and Cons in Sensing. <i>ACS Sensors</i> , 2016 , 1, 1282-1285	9.2	103
237	Cytosolic delivery of large proteins using nanoparticle-stabilized nanocapsules. <i>Nanoscale</i> , 2016 , 8, 180	3 8/ 180	4214
236	Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules. <i>Nanotechnology</i> , 2016 , 27, 374001	3.4	13
235	Solution-processed boron subphthalocyanine derivatives as acceptors for organic bulk-heterojunction solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7345-7352	13	58
234	Fabrication of functional nanofibers through post-nanoparticle functionalization. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 678-683	4.8	6
233	Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS Nano, 2015, 9, 7775-82	16.7	134
232	Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7561-7566	7.1	28
231	Cellular imaging of endosome entrapped small gold nanoparticles. <i>MethodsX</i> , 2015 , 2, 306-15	1.9	33
230	Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. <i>Nature Chemistry</i> , 2015 , 7, 597-603	17.6	300
229	Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe. <i>Analytical Chemistry</i> , 2015 , 87, 8977-84	7.8	96
228	"Superchiral" Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8380-3	16.4	127

(2015-2015)

227	Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules. <i>Bioconjugate Chemistry</i> , 2015 , 26, 950-4	6.3	65
226	Impedance Spectroscopy of Ionic Ligand-Modulated Charge Transport of Gold Nanoparticle Films. <i>Small</i> , 2015 , 11, 3814-21	11	9
225	Tuning the interactions of PEG-coated gold nanorods with BSA and model proteins through insertion of amino or carboxylate groups. <i>Journal of Inorganic Biochemistry</i> , 2015 , 150, 120-5	4.2	9
224	Binding Studies of Cucurbit[7]uril with Gold Nanoparticles Bearing Different Surface Functionalities. <i>Tetrahedron Letters</i> , 2015 , 56, 3653-3657	2	13
223	Cell surface-based sensing with metallic nanoparticles. <i>Chemical Society Reviews</i> , 2015 , 44, 4264-4274	58.5	69
222	Acylsulfonamide-Functionalized Zwitterionic Gold Nanoparticles for Enhanced Cellular Uptake at Tumor pH. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6567-70	16.4	133
221	The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. <i>ACS Nano</i> , 2015 , 9, 9986-93	16.7	250
220	Organic solar cells based on acceptor-functionalized diketopyrrolopyrrole derivatives. <i>Journal of Photonics for Energy</i> , 2015 , 5, 057215	1.2	4
219	Zwitterionic Ligands Bound to CdSe/ZnS Quantum Dots Prevent Adhesion to Mammalian Cells. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2015 , 190, 2302-2306	1	2
218	Bacteriophage-based nanoprobes for rapid bacteria separation. <i>Nanoscale</i> , 2015 , 7, 16230-6	7.7	39
217	Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2015 , 26, 1931-7	3.5	25
216	A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. <i>Nature Nanotechnology</i> , 2015 , 10, 65-9	28.7	108
215	Regulating exocytosis of nanoparticles via host-guest chemistry. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 2474-2479	3.9	27
214	Hybrid organic-inorganic colloidal composite 'sponges' via internal crosslinking. <i>Small</i> , 2015 , 11, 1302-9	11	15
213	Probing the Protein-Nanoparticle Interface: The Role of Aromatic Substitution Pattern on Affinity. Supramolecular Chemistry, 2015 , 27, 123-126	1.8	3
212	Control of nanoparticle penetration into biofilms through surface design. <i>Chemical Communications</i> , 2015 , 51, 282-5	5.8	99
211	Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 506-10	16.4	42
21 0	Nanocomposites: Hybrid OrganicIhorganic Colloidal Composite SpongesIvia Internal Crosslinking (Small 11/2015). <i>Small</i> , 2015 , 11, 1301-1301	11	

209	Acylsulfonamide-Functionalized Zwitterionic Gold Nanoparticles for Enhanced Cellular Uptake at Tumor pH. <i>Angewandte Chemie</i> , 2015 , 127, 6667-6670	3.6	13
208	Fabrication of Robust Protein Films Using Nanoimprint Lithography. <i>Advanced Materials</i> , 2015 , 27, 6251	- 5 4	23
207	A Multichannel Biosensor for Rapid Determination of Cell Surface Glycomic Signatures. <i>ACS Central Science</i> , 2015 , 1, 191-197	16.8	32
206	Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules. <i>Bioconjugate Chemistry</i> , 2015 , 26, 1004-7	6.3	49
205	Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality. <i>Advanced Materials</i> , 2015 , 27, 5610-6	24	69
204	Highlights from the latest articles in nanomaterial-based therapies for targeting cancer stem cells. <i>Nanomedicine</i> , 2015 , 10, 3427-9	5.6	1
203	Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Advances, 2015, 5, 10555	3 .7 05	5 <u>5</u> 2p
202	Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Gold Nanoparticles in Biological Samples Using the Synergy between Added Matrix and the Gold Core. <i>Analytical Chemistry</i> , 2015 , 87, 12145-50	7.8	11
201	Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 125, 255-63	6	37
200	Polymer - Nanoparticle Assemblies for Array Based Sensing. <i>Current Organic Chemistry</i> , 2015 , 109, 1054	-1962	7
199	Inorganic Nanoparticles for Therapeutic Delivery: Trials, Tribulations and Promise. <i>Current Opinion in Colloid and Interface Science</i> , 2014 , 19, 49-55	7.6	38
198	Gold nanoparticles for nucleic acid delivery. <i>Molecular Therapy</i> , 2014 , 22, 1075-1083	11.7	316
197	Detection of bacteria using inkjet-printed enzymatic test strips. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 19525-30	9.5	60
196	Insulin-Based Regulation of Glucose-functionalized Nanoparticle Uptake in Muscle Cells. <i>Journal of Materials Chemistry B</i> , 2014 ,	7.3	13
195	Immobilization and stabilization of lipase (CaLB) through hierarchical interfacial assembly. <i>Biomacromolecules</i> , 2014 , 15, 3915-22	6.9	39
194	Optimizing the selective recognition of protein isoforms through tuning of nanoparticle hydrophobicity. <i>Nanoscale</i> , 2014 , 6, 6492-6495	7.7	18
193	Environmentally responsive histidine-carboxylate zipper formation between proteins and nanoparticles. <i>Nanoscale</i> , 2014 , 6, 8873-7	7.7	7
192	Fabrication of corona-free nanoparticles with tunable hydrophobicity. <i>ACS Nano</i> , 2014 , 8, 6748-55	16.7	239

191	Effect of nano-scale curvature on the intrinsic blood coagulation system. <i>Nanoscale</i> , 2014 , 6, 14484-7	7.7	21
190	Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. <i>ACS Nano</i> , 2014 , 8, 10682-6	16.7	484
189	Hierarchical Structures of Polystyrene-block-poly(2-vinylpyridine)/PalladiumPincer Surfactants: Effect of Weak SurfactantPolymer Interactions on the Morphological Behavior. <i>Macromolecules</i> , 2014 , 47, 5774-5783	5.5	11
188	Promises and pitfalls of intracellular delivery of proteins. <i>Bioconjugate Chemistry</i> , 2014 , 25, 1602-8	6.3	204
187	The role of surface functionality in nanoparticle exocytosis. Advanced Healthcare Materials, 2014, 3, 120	00:120	2 27
186	High-content imaging and gene expression analysis to study cell-nanomaterial interactions: the effect of surface hydrophobicity. <i>Biomaterials</i> , 2014 , 35, 9941-9950	15.6	56
185	Rapid purification of gold nanorods for biomedical applications. <i>MethodsX</i> , 2014 , 1, 118-123	1.9	25
184	Supramolecular tailoring of protein-nanoparticle interactions using cucurbituril mediators. <i>Chemical Communications</i> , 2014 , 50, 5565-8	5.8	24
183	Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles. <i>Materials Horizons</i> , 2014 , 2014, 102-105	14.4	97
182	Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics. <i>Nanomedicine</i> , 2014 , 9, 1487-98	5.6	29
181	Fabrication of multiresponsive bioactive nanocapsules through orthogonal self-assembly. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5137-41	16.4	19
180	Fabrication of Multiresponsive Bioactive Nanocapsules through Orthogonal Self-Assembly. <i>Angewandte Chemie</i> , 2014 , 126, 5237-5241	3.6	1
179	NanoparticleBrotein interactions: Water is the key. MRS Bulletin, 2014, 39, 1069-1073	3.2	14
178	Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor. <i>ACS Nano</i> , 2014 , 8, 12014-9	16.7	58
177	Rapid coating of surfaces with functionalized nanoparticles for regulation of cell behavior. <i>Advanced Materials</i> , 2014 , 26, 3310-4	24	23
176	Bio and Nano Working Together: Engineering the Protein-Nanoparticle Interface. <i>Israel Journal of Chemistry</i> , 2013 , 53, 521-529	3.4	5
175	Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. <i>ACS Nano</i> , 2013 , 7, 6667-6673	16.7	154
174	Triggered Nanoparticles as Therapeutics. <i>Nano Today</i> , 2013 , 8, 439-447	17.9	90

173	The role of ligand coordination on the cytotoxicity of cationic quantum dots in HeLa cells. <i>Nanoscale</i> , 2013 , 5, 12140-12143	7.7	25
172	Recognition of glycosaminoglycan chemical patterns using an unbiased sensor array. <i>Chemical Science</i> , 2013 , 4, 2076	9.4	42
171	Aromatic stacking interactions in flavin model systems. <i>Accounts of Chemical Research</i> , 2013 , 46, 1000-9	24.3	34
170	The role of surface functionality in determining nanoparticle cytotoxicity. <i>Accounts of Chemical Research</i> , 2013 , 46, 681-91	24.3	284
169	Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS). <i>Nanoscale</i> , 2013 , 5, 5063-6	7.7	21
168	Multiplexed imaging of nanoparticles in tissues using laser desorption/ionization mass spectrometry. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12564-7	16.4	64
167	Excited state charge redistribution and dynamics in the donor-Eacceptor flavin derivative ABFL. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 15684-94	3.4	12
166	Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. <i>Small</i> , 2013 , 9, 300-305	11	143
165	Preparation of 2 nm gold nanoparticles for in vitro and in vivo applications. <i>Methods in Molecular Biology</i> , 2013 , 1025, 3-8	1.4	11
164	Array-based sensing of metastatic cells and tissues using nanoparticle-fluorescent protein conjugates. <i>ACS Nano</i> , 2012 , 6, 8233-40	16.7	86
163	Nanoscale graphene oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16725-33	16.4	171
162	Fluorescence resonance energy transfer in recognition-mediated polymer-quantum dot assemblies. <i>Polymer Chemistry</i> , 2012 , 3, 3072	4.9	3
161	Colorimetric protein sensing using catalytically amplified sensor arrays. <i>Small</i> , 2012 , 8, 3589-92	11	89
160	Flavin as a photo-active acceptor for efficient energy and charge transfer in a model donor-acceptor system. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 6749-54	3.6	14
159	Determination of the intracellular stability of gold nanoparticle monolayers using mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 4321-6	7.8	35
158	Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. <i>Chemical Communications</i> , 2012 , 48, 4543-5	5.8	37
157	Nanomanufacturing of biomaterials. <i>Materials Today</i> , 2012 , 15, 478-485	21.8	49
156	Nanoparticle hydrophobicity dictates immune response. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3965-7	16.4	342

155	Control of surface tension at liquid-liquid interfaces using nanoparticles and nanoparticle-protein complexes. <i>Langmuir</i> , 2012 , 28, 2023-7	4	38
154	Two- and Three-Dimensional Network of Nanoparticles via Polymer-Mediated Self-Assembly <i>ACS Macro Letters</i> , 2012 , 1, 396-399	6.6	8
153	Cell alignment using patterned biocompatible gold nanoparticle templates. Small, 2012, 8, 1209-13, 112	2 6 1	20
152	Surface functionalization of nanoparticles for nanomedicine. Chemical Society Reviews, 2012, 41, 2539-4	14 8.5	552
151	Monolayer coated gold nanoparticles for delivery applications. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 200-16	18.5	382
150	Aggregation and interaction of cationic nanoparticles on bacterial surfaces. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6920-3	16.4	180
149	Gold nanoparticles in chemical and biological sensing. <i>Chemical Reviews</i> , 2012 , 112, 2739-79	68.1	3476
148	Pathway switching in templated virus-like particle assembly. <i>Soft Matter</i> , 2012 , 8, 4571	3.6	24
147	Flavin-Functionalized Amphiphilic Block Copolymer Gels. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1758-1767	2.6	3
146	Gold nanoparticles: preparation, properties, and applications in bionanotechnology. <i>Nanoscale</i> , 2012 , 4, 1871-80	7.7	814
145	Direct patterning of engineered ionic gold nanoparticles via nanoimprint lithography. <i>Advanced Materials</i> , 2012 , 24, 6330-4	24	26
144	Direct patterning of quantum dot nanostructuresviaelectron beam lithography. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16859		34
143	Stability of quantum dots in live cells. <i>Nature Chemistry</i> , 2011 , 3, 963-8	17.6	107
142	Supramolecular functionalization of electron-beam generated nanostructures. <i>Langmuir</i> , 2011 , 27, 1543	3 ₂ 5	15
141	Reusable biocatalytic crosslinked microparticles self-assembled from enzyme-nanoparticle complexes. <i>Chemical Communications</i> , 2011 , 47, 12077-9	5.8	30
140	Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. <i>Journal of the American Chemical Society</i> , 2011 , 133, 9650-3	16.4	273
139	Nanoparticles and Sensors 2011 , 163-190		
138	Drug Delivery Using Nanoparticle-Stabilized Nanocapsules. <i>Angewandte Chemie</i> , 2011 , 123, 497-501	3.6	17

137	Drug delivery using nanoparticle-stabilized nanocapsules. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 477-81	16.4	103
136	Direct photopatterning of light-activated gold nanoparticles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14156		5
135	Bacterial adhesion on hybrid cationic nanoparticle-polymer brush surfaces: ionic strength tunes capture from monovalent to multivalent binding. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 87, 109-15	5 ⁶	45
134	Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. <i>PLoS ONE</i> , 2011 , 6, e24374	3.7	267
133	Tuning payload delivery in tumour cylindroids using gold nanoparticles. <i>Nature Nanotechnology</i> , 2010 , 5, 465-72	28.7	400
132	Molecular recognition-induced liquid crystals from complementary diaminopyridine and flavin dyads. <i>Supramolecular Chemistry</i> , 2010 , 22, 691-696	1.8	5
131	Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2642-5	16.4	153
130	Chemically directed immobilization of nanoparticles onto gold substrates for orthogonal assembly using dithiocarbamate bond formation. <i>ACS Applied Materials & District Sciences</i> , 2010 , 2, 795-9	9.5	24
129	Effect of nanoparticle surface charge at the plasma membrane and beyond. <i>Nano Letters</i> , 2010 , 10, 254	1 3£8 .5	463
128	Array-based sensing of normal, cancerous, and metastatic cells using conjugated fluorescent polymers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1018-22	16.4	136
127	Metal nanoparticle wires formed by an integrated nanomolding-chemical assembly process: fabrication and properties. <i>ACS Nano</i> , 2010 , 4, 7660-6	16.7	18
126	Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array. <i>Chemical Science</i> , 2010 , 1, 134	9.4	95
125	Enzyme-amplified array sensing of proteins in solution and in biofluids. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5285-9	16.4	180
124	Gold nanoparticle self-assembly promoted by a non-covalent, charge-complemented coiled-coil peptide. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5608		9
123	Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 396, 1025-35	4.4	53
122	Gold nanoparticle platforms as drug and biomacromolecule delivery systems. <i>Journal of Controlled Release</i> , 2010 , 148, 122-127	11.7	355
121	Biocompatible charged and uncharged surfaces using nanoparticle films. <i>Advanced Materials</i> , 2010 , 22, 5420-3	24	19
120	Functional Nanoparticles as Catalysts and Sensors 2010 , 301-331		1

(2008-2010)

119	Gold nanoparticle-fluorophore complexes: sensitive and discerning "noses" for biosystems sensing. Angewandte Chemie - International Edition, 2010 , 49, 3268-79	16.4	307
118	Photooxidation of Nanopatterned Poly(chloromethylstyrene): Direct Formation of Crosslinked Aldehyde-Functionalized Films for Chemical Functionalization and Bioconjugation. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 910-4	4.8	10
117	Array-based sensing with nanoparticles: 'chemical noses' for sensing biomolecules and cell surfaces. <i>Current Opinion in Chemical Biology</i> , 2010 , 14, 728-36	9.7	118
116	The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. <i>Small</i> , 2010 , 6, 2246-9	11	203
115	Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10912-6	11.5	259
114	Nanoimprinted Polyethyleneimine: A Multimodal Template for Nanoparticle Assembly and Immobilization. <i>Advanced Functional Materials</i> , 2009 , 19, 2937-2942	15.6	40
113	Nickel-ion-mediated control of the stoichiometry of his-tagged protein/nanoparticle interactions. <i>Macromolecular Bioscience</i> , 2009 , 9, 174-8	5.5	26
112	Catalytic microcapsules assembled from enzyme-nanoparticle conjugates at oil-water interfaces. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5341-4	16.4	65
111	Magnetic assembly of colloidal superstructures with multipole symmetry. <i>Nature</i> , 2009 , 457, 999-1002	50.4	357
110	Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. <i>Nature Chemistry</i> , 2009 , 1, 461-5	17.6	397
109	Gold nanoparticle-PPE constructs as biomolecular material mimics: understanding the electrostatic and hydrophobic interactions. <i>Soft Matter</i> , 2009 , 5, 607-612	3.6	42
108	Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1360-1	16.4	276
107	Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4nanoparticles. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6328		69
106	Engineered nanoparticle surfaces for improved mass spectrometric analyses. <i>Analyst, The</i> , 2009 , 134, 2183-8	5	50
105	Self-assembly of fluorocarbon-coated FePt nanoparticles for controlling structure and wettability of surfaces. <i>Soft Matter</i> , 2009 , 5, 1247-1250	3.6	8
104	Accessibility of cylindrical channels within patterned mesoporous silica films using nanoparticle diffusion. <i>Journal of Materials Chemistry</i> , 2009 , 19, 70-74		13
103	Synthetic "chaperones": nanoparticle-mediated refolding of thermally denatured proteins. <i>Chemical Communications</i> , 2008 , 3504-6	5.8	70
102	'Lock and key' control of optical properties in a push-pull system. Chemical Communications, 2008, 1653	- 5 .8	9

101	Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. <i>Nano Letters</i> , 2008 , 8, 420-4	11.5	452
100	Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. <i>ACS Nano</i> , 2008 , 2, 2213-8	16.7	383
99	Structural control of the monolayer stability of water-soluble gold nanoparticles. <i>Journal of Materials Chemistry</i> , 2008 , 18, 70-73		44
98	Controlled nanoparticleassembly through protein conformational changes. <i>Soft Matter</i> , 2008 , 4, 751-75	6 5.6	12
97	Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14139-43	16.4	107
96	Isomeric control of protein recognition with amino acid- and dipeptide-functionalized gold nanoparticles. <i>Chemistry - A European Journal</i> , 2008 , 14, 143-50	4.8	48
95	Rapid and efficient identification of bacteria using gold-nanoparticle-poly(para-phenyleneethynylene) constructs. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2590-4	16.4	334
94	Applications of Nanoparticles in Biology. <i>Advanced Materials</i> , 2008 , 20, 4225-4241	24	1241
93	Nanoparticle Immobilization on Surfaces via Activatable Heterobifunctional Dithiocarbamate Bond Formation. <i>Advanced Materials</i> , 2008 , 20, NA-NA	24	7
92	Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 2008, 60, 1307-1315	18.5	2036
91	Crown ether-peptide construct selectively kills cancer cells. <i>Chemical Biology and Drug Design</i> , 2008 , 72, 1-2	2.9	3
90	Binding and templation of nanoparticle receptors to peptide alpha-helices through surface recognition. <i>Chemical Communications</i> , 2007 , 2796-8	5.8	27
89	DNA-mediated assembly of iron platinum (FePt) nanoparticles. <i>Journal of Materials Chemistry</i> , 2007 , 17, 52-55		39
88	Facial control of nanoparticle binding to cytochrome C. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2732-3	16.4	77
87	Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. Journal of the American Chemical Society, 2007 , 129, 10747-53	16.4	254
86	The synthesis of a pyrrole-functionalized cyclobis(paraquat-p-phenylene) derivative and its corresponding [2]rotaxane and [2]catenane and their subsequent deposition onto an electrode surface. <i>Tetrahedron</i> , 2007 , 63, 11114-11121	2.4	8
85	Bricks and mortar[hanoparticle self-assembly using polymers. <i>Polymer International</i> , 2007 , 56, 461-466	3.3	42
84	Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. <i>Nature Nanotechnology</i> , 2007 , 2, 318-23	28.7	666

(2004-2006)

83	"Cleaning" of nanoparticle inhibitors via proteolysis of adsorbed proteins. <i>Chemical Communications</i> , 2006 , 2338-40	5.8	34
82	Stabilization of ⊞hymotrypsin at air-water interface through surface binding to gold nanoparticle scaffolds. <i>Soft Matter</i> , 2006 , 2, 558-560	3.6	42
81	Engineering the nanoparticle-biomacromolecule interface. Soft Matter, 2006, 2, 190-204	3.6	113
80	Recognition-Mediated Assembly of Nanoparticle-Diblock Copolymer Micelles with Controlled Size. <i>Chemistry of Materials</i> , 2006 , 18, 5404-5409	9.6	18
79	Recognition-directed orthogonal self-assembly of polymers and nanoparticles on patterned surfaces. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3162-3	16.4	93
78	Modulation of the catalytic behavior of alpha-chymotrypsin at monolayer-protected nanoparticle surfaces. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14612-8	16.4	117
77	Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. Journal of the American Chemical Society, 2006 , 128, 1078-9	16.4	696
76	Stimuli responsive surfaces through recognition-mediated polymer modification. <i>Chemical Communications</i> , 2005 , 5157-9	5.8	26
75	Modulation of the Interparticle Spacing and Optical Behavior of Nanoparticle Ensembles Using a Single Protein Spacer. <i>Chemistry of Materials</i> , 2005 , 17, 6317-6322	9.6	51
74	Controlled Plasmon Resonance of Gold Nanoparticles Self-Assembled with PAMAM Dendrimers. <i>Chemistry of Materials</i> , 2005 , 17, 487-490	9.6	170
73	Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12873-81	16.4	224
72	Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications. <i>Chemistry of Materials</i> , 2005 , 17, 4617-4621	9.6	200
71	Feature Article: Recognition-Mediated Assembly of Polymers. <i>Polymer News</i> , 2004 , 29, 40-49		
70	The electrochemically tuneable recognition properties of an electropolymerised flavin derivative. <i>Chemical Communications</i> , 2004 , 2722-3	5.8	16
69	Modulation of Spacing and Magnetic Properties of Iron Oxide Nanoparticles through Polymer-Mediated B ricks and Mortar Self -assembly. <i>Chemistry of Materials</i> , 2004 , 16, 3252-3256	9.6	72
68	Adsorption/desorption of mono- and diblock copolymers on surfaces using specific hydrogen bonding interactions. <i>Langmuir</i> , 2004 , 20, 5958-64	4	28
67	Monolayer-controlled substrate selectivity using noncovalent enzyme-nanoparticle conjugates. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13572-3	16.4	90
66	Anthracene-Functionalized Polystyrene Random Copolymers: Effects of Side-Chain Modification on Polymer Structure and Behavior. <i>Macromolecules</i> , 2004 , 37, 92-98	5.5	12

65	Effect of ionic strength on the binding of alpha-chymotrypsin to nanoparticle receptors. <i>Langmuir</i> , 2004 , 20, 4178-81	4	67
64	Integration of Recognition Elements with Macromolecular Scaffolds: Effects on Polymer Self-Assembly in the Solid State. <i>Macromolecules</i> , 2004 , 37, 4931-4939	5.5	16
63	Tunable reactivation of nanoparticle-inhibited beta-galactosidase by glutathione at intracellular concentrations. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13987-91	16.4	147
62	Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. <i>Journal of the American Chemical Society</i> , 2004 , 126, 739-43	16.4	261
61	Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. <i>Journal of Materials Chemistry</i> , 2004 , 14, 690		62
60	Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. <i>Bioconjugate Chemistry</i> , 2004 , 15, 897-900	6.3	1225
59	Molecular Self-Assembly 2004 ,		1
58	Model systems for flavoenzyme activity: flavin-functionalised SAMs as models for probing redox modulation through hydrogen bonding. <i>Chemical Communications</i> , 2003 , 2468-9	5.8	13
57	Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15789-95	16.4	60
56	Reversible "irreversible" inhibition of chymotrypsin using nanoparticle receptors. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13387-91	16.4	94
55	Specific Hydrogen-Bond-Mediated Recognition and Modification of Surfaces Using Complementary Functionalized Polymers. <i>Langmuir</i> , 2003 , 19, 7089-7093	4	23
54	Surface confined pseudorotaxanes with electrochemically controllable complexation properties. Journal of Materials Chemistry, 2003, 13, 2111		43
53	Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 5018-23	11.5	163
52	Effects of Branched Ligands on the Structure and Stability of Monolayers on Gold Nanoparticles. <i>Langmuir</i> , 2002 , 18, 2368-2373	4	61
51	Formation of Recognition-Induced Polymersomes Using Complementary Rigid Random Copolymers. <i>Macromolecules</i> , 2002 , 35, 9621-9623	5.5	64
50	Flavin Mononucleotide as a Probe for Dopant Encapsulation in Sol © el Silicates. <i>Langmuir</i> , 2002 , 18, 914	9 _z p152	3
49	Metal Directed Assembly of Terpyridine-Functionalized Gold Nanoparticles. <i>Nano Letters</i> , 2002 , 2, 1345	5-13.458	95
48	Monolayer Exchange Chemistry of Fe2O3 Nanoparticles. <i>Chemistry of Materials</i> , 2002 , 14, 2628-2636	9.6	96

47	Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2181-2191		52
46	A B uilding Block[Approach to Mixed-Colloid Systems Through Electrostatic Self-Organization. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 635, C4.46.1		
45	Reversible Side Chain Modification through Noncovalent Interactions. P lug and Play Polymers. <i>Macromolecules</i> , 2001 , 34, 2597-2601	5.5	124
44	Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7626-9	16.4	234
43	Tuneable electrochemical interactions between polystyrenes with anthracenyl and tetrathiafulvalenyl sidechains. <i>Chemical Communications</i> , 2001 , 2232-3	5.8	9
42	The first redox controlled hydrogen bonded three-pole switch. Chemical Communications, 2001, 1954-5	5.8	22
41	Model systems for flavoenzyme activity. Control of flavin recognition via specific electrostatic interactions. <i>Organic Letters</i> , 2001 , 3, 1531-4	6.2	33
40	Nanoparticles and Polymers. Bricks and Mortar Self-Assembly of Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 635, C1.3.1		
39	Intra-Monolayer Hydrogen-Bonding in Monolayer Protected Gold Clusters. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 635, C4.19.1		
38	A B uilding Block[Approach To Mixed-Colloid Systems Through Electrostatic Self-Organization. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 676, 321		
37	Substrate Based B ricks-and-Mortar S elf-Assembly of Spherical Nanoparticle Aggregates. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 676, 851		
36	Self-assembly of nanoparticles into structured spherical and network aggregates. <i>Nature</i> , 2000 , 404, 746-8	50.4	1010
35	The Plausible Aromaticity of 1,8-Naphthalimides: The Enthalpy of Formation of N-Methyl-1,8-Naphthalimide. <i>Structural Chemistry</i> , 2000 , 11, 1-7	1.8	8
34	Communication of electronic information over nanometer distances with supramolecular transduction. An experimental and density functional investigation. <i>Perkin Transactions II RSC</i> , 2000 , 1309-1313		13
33	Kinetic trapping of hostguest complexes in a polymeric matrix. Chemical Communications, 2000, 447-44	8 5.8	2
32	Divergent Surface Functionalization Using Acid Fluoride-Functionalized Self-Assembled Monolayers. <i>Langmuir</i> , 2000 , 16, 1460-1462	4	14
31	Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymers. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5895-5896	16.4	161
30	Intra- and Intermonolayer Hydrogen Bonding in Amide-Functionalized Alkanethiol Self-Assembled Monolayers on Gold Nanoparticles. <i>Langmuir</i> , 2000 , 16, 9527-9532	4	84

29	Photochemical Control of the Macroconformation of Polystyrene Using Azobenzene Side Chains. <i>Macromolecules</i> , 2000 , 33, 9173-9175	5.5	22
28	Formation and pH-controlled assembly of amphiphilic gold nanoparticles. <i>Chemical Communications</i> , 2000 , 1943-1944	5.8	125
27	From Enzyme to Molecular Device. Exploring the Interdependence of Redox and Molecular Recognition. <i>Accounts of Chemical Research</i> , 1999 , 32, 44-52	24.3	228
26	Recognition-Mediated Unfolding of a Self-Assembled Polymeric Globule. <i>Macromolecules</i> , 1999 , 32, 49	5 6.4 96	080
25	The donor atomlinteraction of sulfur with flavin. A density functional investigation. <i>Heteroatom Chemistry</i> , 1998 , 9, 605-606	1.2	16
24	Stereoisomeric p-Quinodimethanes. <i>Journal of Organic Chemistry</i> , 1998 , 63, 379-382	4.2	6
23	Model Systems for Flavoenzyme Activity. Modulation of Flavin Redox Potentials through Estacking Interactions. <i>Journal of the American Chemical Society</i> , 1997 , 119, 1165-1166	16.4	88
22	Thermally Controlled Formation of Fullerene D iene Oligomers and Copolymers. <i>Macromolecules</i> , 1997 , 30, 3949-3951	5.5	18
21	Model Systems for Flavoenzyme Activity: One- and Two-Electron Reduction of Flavins in Aprotic Hydrophobic Environments. <i>Journal of the American Chemical Society</i> , 1997 , 119, 887-892	16.4	127
20	Model Systems for Flavoenzyme Activity. Regulation of Flavin Recognition via Modulation of Receptor Hydrogen-Bond Donor Acceptor Properties. <i>Journal of Organic Chemistry</i> , 1997 , 62, 836-839	4.2	59
19	Model systems for flavoenzyme activity. The effects of specific hydrogen bonds on the 13C and 1H NMR of flavins. <i>Journal of Molecular Recognition</i> , 1996 , 9, 158-62	2.6	15
18	Model systems for cofactor activity. Biomimetic reduction of vitamin K by 1,3-propanedithiol. <i>Heteroatom Chemistry</i> , 1996 , 7, 293-294	1.2	O
17	A Brief Introduction to Supramolecular Chemistry in a Polymer Context1-7		
16	Molecular Recognition Using Amphiphilic Macromolecules9-36		1
15	Supramolecular Control of Mechanical Properties in Single Molecules, Interfaces, and Macroscopic Mat	erials3	7-62
14	Hydrogen Bond Functionalized Block Copolymers and Telechelic Oligomers63-102		
13	Noncovalent Side Chain Modification103-136		
12	Metallosupramolecular Polymers, Networks, and Gels157-178		9

11	Polymeric Capsules: Catalysis and Drug Delivery179-205	2
10	Sequence-Specific Hydrogen Bonded Units for Directed Association, Assembly, and Ligation207-234	
9	Bioinspired Supramolecular Design in Polymers for Advanced Mechanical Properties235-258	1
8	Structure and Self-Assembly of Amphiphilic Dendrimers in Water259-306	3
7	Colorimetric Sensing and Biosensing Using Functionalized Conjugated Polymers307-334	
6	Glycodendrimers and other Macromolecules Bearing Multiple Carbohydrates335-358	3
5	Supramolecular Polymerization of Peptides and Peptide Derivatives: Nanofibrous Materials359-393	
4	Molecular Imprinting for Sensor Applications395-429	5
3	Proteins and Nanoparticles: Covalent and Noncovalent Conjugates65-78	5
2	Supramolecular Organization Predicts Protein Nanoparticle Delivery to Neutrophils for Acute Lung Inflammation Diagnosis and Treatment	4
1	Tailoring Nanoparticles for the Recognition of Biomacromolecule Surfaces91-117	