Vincent M Rotello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4877629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 2012, 112, 2739-2779.	23.0	4,017
2	Gold nanoparticles in delivery applicationsâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1307-1315.	6.6	2,366
3	Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains. Bioconjugate Chemistry, 2004, 15, 897-900.	1.8	1,397
4	Applications of Nanoparticles in Biology. Advanced Materials, 2008, 20, 4225-4241.	11.1	1,376
5	Self-assembly of nanoparticles into structured spherical and network aggregates. Nature, 2000, 404, 746-748.	13.7	1,100
6	Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4, 1871-1880.	2.8	1,067
7	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
8	Glutathione-Mediated Delivery and Release Using Monolayer Protected Nanoparticle Carriers. Journal of the American Chemical Society, 2006, 128, 1078-1079.	6.6	773
9	Detection and identification of proteins using nanoparticle–fluorescent polymer â€~chemical nose' sensors. Nature Nanotechnology, 2007, 2, 318-323.	15.6	724
10	Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 2019, 48, 415-427.	18.7	695
11	Surface functionalization of nanoparticles for nanomedicine. Chemical Society Reviews, 2012, 41, 2539.	18.7	651
12	Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Reviews Microbiology, 2021, 19, 23-36.	13.6	617
13	Functional Gold Nanoparticles as Potent Antimicrobial Agents against Multi-Drug-Resistant Bacteria. ACS Nano, 2014, 8, 10682-10686.	7.3	615
14	Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano Letters, 2010, 10, 2543-2548.	4.5	537
15	Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers. Nano Letters, 2008, 8, 420-424.	4.5	497
16	Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nature Chemistry, 2009, 1, 461-465.	6.6	447
17	Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 2019, 6, 23.	6.3	445
18	Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nature Nanotechnology, 2010, 5, 465-472.	15.6	439

#	Article	IF	CITATIONS
19	Monolayer coated gold nanoparticles for delivery applications. Advanced Drug Delivery Reviews, 2012, 64, 200-216.	6.6	429
20	Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano, 2017, 11, 2452-2458.	7.3	423
21	Nanoparticle Hydrophobicity Dictates Immune Response. Journal of the American Chemical Society, 2012, 134, 3965-3967.	6.6	418
22	Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano, 2008, 2, 2213-2218.	7.3	416
23	Gold nanoparticle platforms as drug and biomacromolecule delivery systems. Journal of Controlled Release, 2010, 148, 122-127.	4.8	405
24	Magnetic assembly of colloidal superstructures with multipole symmetry. Nature, 2009, 457, 999-1002.	13.7	401
25	Gold Nanoparticles for Nucleic Acid Delivery. Molecular Therapy, 2014, 22, 1075-1083.	3.7	401
26	Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nature Chemistry, 2015, 7, 597-603.	6.6	395
27	Rapid and Efficient Identification of Bacteria Using Goldâ€Nanoparticle–Poly(<i>para</i> â€phenyleneethynylene) Constructs. Angewandte Chemie - International Edition, 2008, 47, 2590-2594.	7.2	368
28	The Role of Surface Functionality in Determining Nanoparticle Cytotoxicity. Accounts of Chemical Research, 2013, 46, 681-691.	7.6	337
29	The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. ACS Nano, 2015, 9, 9986-9993.	7.3	328
30	Gold Nanoparticle–Fluorophore Complexes: Sensitive and Discerning "Noses―for Biosystems Sensing. Angewandte Chemie - International Edition, 2010, 49, 3268-3279.	7.2	318
31	Colorimetric Bacteria Sensing Using a Supramolecular Enzyme–Nanoparticle Biosensor. Journal of the American Chemical Society, 2011, 133, 9650-9653.	6.6	317
32	Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS ONE, 2011, 6, e24374.	1.1	315
33	Entrapment of Hydrophobic Drugs in Nanoparticle Monolayers with Efficient Release into Cancer Cells. Journal of the American Chemical Society, 2009, 131, 1360-1361.	6.6	305
34	Fabrication of Corona-Free Nanoparticles with Tunable Hydrophobicity. ACS Nano, 2014, 8, 6748-6755.	7.3	286
35	Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10912-10916.	3.3	285
36	Biomimetic Interactions of Proteins with Functionalized Nanoparticles:  A Thermodynamic Study. Journal of the American Chemical Society, 2007, 129, 10747-10753.	6.6	284

#	Article	IF	CITATIONS
37	Integrating recognition elements with nanomaterials for bacteria sensing. Chemical Society Reviews, 2017, 46, 1272-1283.	18.7	282
38	Control of Protein Structure and Function through Surface Recognition by Tailored Nanoparticle Scaffolds. Journal of the American Chemical Society, 2004, 126, 739-743.	6.6	273
39	Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry, 2014, 25, 1602-1608.	1.8	267
40	Inhibition of DNA Transcription Using Cationic Mixed Monolayer Protected Gold Clusters. Journal of the American Chemical Society, 2001, 123, 7626-7629.	6.6	266
41	Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano, 2016, 10, 4421-4430.	7.3	264
42	From Enzyme to Molecular Device. Exploring the Interdependence of Redox and Molecular Recognition. Accounts of Chemical Research, 1999, 32, 44-52.	7.6	259
43	Tunable Inhibition and Denaturation of α-Chymotrypsin with Amino Acid-Functionalized Gold Nanoparticles. Journal of the American Chemical Society, 2005, 127, 12873-12881.	6.6	249
44	The Role of Surface Functionality on Acute Cytotoxicity, ROS Generation and DNA Damage by Cationic Gold Nanoparticles. Small, 2010, 6, 2246-2249.	5.2	232
45	Aggregation and Interaction of Cationic Nanoparticles on Bacterial Surfaces. Journal of the American Chemical Society, 2012, 134, 6920-6923.	6.6	221
46	Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications. Chemistry of Materials, 2005, 17, 4617-4621.	3.2	215
47	Enzyme-Amplified Array Sensing of Proteins in Solution and in Biofluids. Journal of the American Chemical Society, 2010, 132, 5285-5289.	6.6	198
48	Effects of engineered nanoparticles on the innate immune system. Seminars in Immunology, 2017, 34, 25-32.	2.7	189
49	Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5018-5023.	3.3	187
50	Surface Charge Controls the Suborgan Biodistributions of Gold Nanoparticles. ACS Nano, 2016, 10, 5536-5542.	7.3	185
51	Controlled Plasmon Resonance of Cold Nanoparticles Self-Assembled with PAMAM Dendrimers. Chemistry of Materials, 2005, 17, 487-490.	3.2	184
52	In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges. Bioconjugate Chemistry, 2017, 28, 880-884.	1.8	183
53	Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing. Journal of the American Chemical Society, 2012, 134, 16725-16733.	6.6	181
54	Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymers. Journal of the American Chemical Society, 2000, 122, 5895-5896.	6.6	177

#	Article	IF	CITATIONS
55	Intracellular Delivery of a Membrane-Impermeable Enzyme in Active Form Using Functionalized Gold Nanoparticles. Journal of the American Chemical Society, 2010, 132, 2642-2645.	6.6	176
56	Direct Delivery of Functional Proteins and Enzymes to the Cytosol Using Nanoparticle-Stabilized Nanocapsules. ACS Nano, 2013, 7, 6667-6673.	7.3	176
57	Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS Nano, 2015, 9, 7775-7782.	7.3	172
58	"Superchiral―Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures. Journal of the American Chemical Society, 2015, 137, 8380-8383.	6.6	171
59	Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Advanced Drug Delivery Reviews, 2020, 156, 188-213.	6.6	167
60	Surface Functionality of Nanoparticles Determines Cellular Uptake Mechanisms in Mammalian Cells. Small, 2013, 9, 300-305.	5.2	165
61	Arrayâ€based "Chemical Nose―Sensing in Diagnostics and Drug Discovery. Angewandte Chemie - International Edition, 2019, 58, 5190-5200.	7.2	165
62	Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. International Journal of Environmental Research and Public Health, 2020, 17, 2078.	1.2	163
63	Acylsulfonamideâ€Functionalized Zwitterionic Gold Nanoparticles for Enhanced Cellular Uptake at Tumor pH. Angewandte Chemie - International Edition, 2015, 54, 6567-6570.	7.2	162
64	Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies. Chemical Society Reviews, 2018, 47, 3421-3432.	18.7	156
65	Tunable Reactivation of Nanoparticle-Inhibited β-Galactosidase by Glutathione at Intracellular Concentrations. Journal of the American Chemical Society, 2004, 126, 13987-13991.	6.6	155
66	Selectivity and Specificity: Pros and Cons in Sensing. ACS Sensors, 2016, 1, 1282-1285.	4.0	153
67	Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections. ACS Nano, 2018, 12, 89-94.	7.3	146
68	Array-Based Sensing of Normal, Cancerous, and Metastatic Cells Using Conjugated Fluorescent Polymers. Journal of the American Chemical Society, 2010, 132, 1018-1022.	6.6	145
69	Model Systems for Flavoenzyme Activity:Â One- and Two-Electron Reduction of Flavins in Aprotic Hydrophobic Environments. Journal of the American Chemical Society, 1997, 119, 887-892.	6.6	140
70	A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Nature Nanotechnology, 2015, 10, 65-69.	15.6	137
71	Array-based sensing with nanoparticles: â€~Chemical noses' for sensing biomolecules and cell surfaces. Current Opinion in Chemical Biology, 2010, 14, 728-736.	2.8	135
72	Modulation of the Catalytic Behavior of α-Chymotrypsin at Monolayer-Protected Nanoparticle Surfaces. Journal of the American Chemical Society, 2006, 128, 14612-14618.	6.6	133

#	Article	IF	CITATIONS
73	Control of nanoparticle penetration into biofilms through surface design. Chemical Communications, 2015, 51, 282-285.	2.2	133
74	Colorimetric Detection of <i>Escherichia coli</i> Based on the Enzyme-Induced Metallization of Gold Nanorods. Small, 2016, 12, 2469-2475.	5.2	133
75	Formation and pH-controlled assembly of amphiphilic gold nanoparticles. Chemical Communications, 2000, , 1943-1944.	2.2	131
76	Reversible Side Chain Modification through Noncovalent Interactions. "Plug and Play―Polymers. Macromolecules, 2001, 34, 2597-2601.	2.2	131
77	Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles. Materials Horizons, 2014, 1, 102-105.	6.4	129
78	Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. Journal of the American Chemical Society, 2018, 140, 12137-12143.	6.6	128
79	Engineering the nanoparticle–biomacromolecule interface. Soft Matter, 2006, 2, 190.	1.2	127
80	Ultrastable and Biofunctionalizable Gold Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 14096-14101.	4.0	127
81	Multiplexed Screening of Cellular Uptake of Gold Nanoparticles Using Laser Desorption/Ionization Mass Spectrometry. Journal of the American Chemical Society, 2008, 130, 14139-14143.	6.6	126
82	Detection of <i>Escherichia coli</i> in Drinking Water Using T7 Bacteriophage-Conjugated Magnetic Probe. Analytical Chemistry, 2015, 87, 8977-8984.	3.2	123
83	Ratiometric Array of Conjugated Polymers–Fluorescent Protein Provides a Robust Mammalian Cell Sensor. Journal of the American Chemical Society, 2016, 138, 4522-4529.	6.6	122
84	Stability of quantum dots in live cells. Nature Chemistry, 2011, 3, 963-968.	6.6	121
85	Nanoparticle-Based Antimicrobials: Surface Functionality is Critical. F1000Research, 2016, 5, 364.	0.8	119
86	General Strategy for Direct Cytosolic Protein Delivery <i>via</i> Protein–Nanoparticle Co-engineering. ACS Nano, 2017, 11, 6416-6421.	7.3	119
87	Fully Zwitterionic Nanoparticle Antimicrobial Agents through Tuning of Core Size and Ligand Structure. ACS Nano, 2016, 10, 8732-8737.	7.3	118
88	Drug Delivery Using Nanoparticle‣tabilized Nanocapsules. Angewandte Chemie - International Edition, 2011, 50, 477-481.	7.2	114
89	Nanomaterials for the Treatment of Bacterial Biofilms. ACS Infectious Diseases, 2016, 2, 3-4.	1.8	111
90	Cancer Cell Discrimination Using Host–Guest "Doubled―Arrays. Journal of the American Chemical Society, 2017, 139, 8008-8012.	6.6	109

#	Article	IF	CITATIONS
91	Direct Cytosolic Delivery of Proteins through Coengineering of Proteins and Polymeric Delivery Vehicles. Journal of the American Chemical Society, 2020, 142, 4349-4355.	6.6	109
92	Monolayer Exchange Chemistry of \hat{I}^3 -Fe2O3Nanoparticles. Chemistry of Materials, 2002, 14, 2628-2636.	3.2	108
93	Triggered nanoparticles as therapeutics. Nano Today, 2013, 8, 439-447.	6.2	106
94	Metal Directed Assembly of Terpyridine-Functionalized Gold Nanoparticles. Nano Letters, 2002, 2, 1345-1348.	4.5	104
95	Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array. Chemical Science, 2010, 1, 134.	3.7	103
96	Array-Based Sensing of Metastatic Cells and Tissues Using Nanoparticle–Fluorescent Protein Conjugates. ACS Nano, 2012, 6, 8233-8240.	7.3	102
97	Model Systems for Flavoenzyme Activity. Modulation of Flavin Redox Potentials through π-Stacking Interactions. Journal of the American Chemical Society, 1997, 119, 1165-1166.	6.6	100
98	Reversible "Irreversible―Inhibition of Chymotrypsin Using Nanoparticle Receptors. Journal of the American Chemical Society, 2003, 125, 13387-13391.	6.6	100
99	Colorimetric Protein Sensing Using Catalytically Amplified Sensor Arrays. Small, 2012, 8, 3589-3592.	5.2	100
100	Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms. Journal of the American Chemical Society, 2020, 142, 10723-10729.	6.6	100
101	Monolayer-Controlled Substrate Selectivity Using Noncovalent Enzymeâ~'Nanoparticle Conjugates. Journal of the American Chemical Society, 2004, 126, 13572-13573.	6.6	98
102	Recognition-Directed Orthogonal Self-Assembly of Polymers and Nanoparticles on Patterned Surfaces. Journal of the American Chemical Society, 2006, 128, 3162-3163.	6.6	98
103	Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality. Advanced Materials, 2015, 27, 5610-5616.	11.1	92
104	Biodegradable Nanocomposite Antimicrobials for the Eradication of Multidrug-Resistant Bacterial Biofilms without Accumulated Resistance. Journal of the American Chemical Society, 2018, 140, 6176-6182.	6.6	92
105	Intra- andIntermonolayer Hydrogen Bonding in Amide-Functionalized Alkanethiol Self-Assembled Monolayers on Gold Nanoparticles. Langmuir, 2000, 16, 9527-9532.	1.6	90
106	Recognition-Mediated Unfolding of a Self-Assembled Polymeric Globule. Macromolecules, 1999, 32, 4956-4960.	2.2	85
107	Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics, 2019, 9, 3280-3292.	4.6	84
108	Synthetic "chaperonesâ€: nanoparticle-mediated refolding of thermally denatured proteins. Chemical Communications, 2008, , 3504.	2.2	82

7

#	Article	IF	CITATIONS
109	Facial Control of Nanoparticle Binding to Cytochrome c. Journal of the American Chemical Society, 2007, 129, 2732-2733.	6.6	81
110	Intracellular delivery of proteins by nanocarriers. Nanomedicine, 2017, 12, 941-952.	1.7	79
111	CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjugate Chemistry, 2018, 29, 445-450.	1.8	79
112	Multiplexed Imaging of Nanoparticles in Tissues Using Laser Desorption/Ionization Mass Spectrometry. Journal of the American Chemical Society, 2013, 135, 12564-12567.	6.6	78
113	Cell surface-based sensing with metallic nanoparticles. Chemical Society Reviews, 2015, 44, 4264-4274.	18.7	78
114	Modulation of Spacing and Magnetic Properties of Iron Oxide Nanoparticles through Polymer-Mediated "Bricks and Mortar―Self-assembly. Chemistry of Materials, 2004, 16, 3252-3256.	3.2	76
115	Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. Journal of Materials Chemistry, 2009, 19, 6328.	6.7	76
116	Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert Opinion on Drug Delivery, 2016, 13, 547-559.	2.4	75
117	Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures, 2017, 1, 015004.	1.0	75
118	Intracellular Activation of Bioorthogonal Nanozymes through Endosomal Proteolysis of the Protein Corona. ACS Nano, 2020, 14, 4767-4773.	7.3	74
119	Model Systems for Flavoenzyme Activity:Â Relationships between Cofactor Structure, Binding and Redox Properties. Journal of the American Chemical Society, 2003, 125, 15789-15795.	6.6	73
120	Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips. ACS Applied Materials & Interfaces, 2014, 6, 19525-19530.	4.0	73
121	Co-Delivery of Protein and Small Molecule Therapeutics Using Nanoparticle-Stabilized Nanocapsules. Bioconjugate Chemistry, 2015, 26, 950-954.	1.8	73
122	Rapid Identification of Bacterial Biofilms and Biofilm Wound Models Using a Multichannel Nanosensor. ACS Nano, 2014, 8, 12014-12019.	7.3	72
123	Formation of Recognition-Induced Polymersomes Using Complementary Rigid Random Copolymers. Macromolecules, 2002, 35, 9621-9623.	2.2	71
124	Modulation of Immune Response Using Engineered Nanoparticle Surfaces. Small, 2016, 12, 76-82.	5.2	71
125	Cross-Linked Polymer-Stabilized Nanocomposites for the Treatment of Bacterial Biofilms. ACS Nano, 2017, 11, 946-952.	7.3	71
126	Effect of Ionic Strength on the Binding of α-Chymotrypsin to Nanoparticle Receptors. Langmuir, 2004, 20, 4178-4181.	1.6	70

#	Article	IF	CITATIONS
127	Catalytic Microcapsules Assembled from Enzyme–Nanoparticle Conjugates at Oil–Water Interfaces. Angewandte Chemie - International Edition, 2009, 48, 5341-5344.	7.2	69
128	Direct Cytosolic Delivery of siRNA Using Nanoparticle‣tabilized Nanocapsules. Angewandte Chemie - International Edition, 2015, 54, 506-510.	7.2	69
129	Solution-processed boron subphthalocyanine derivatives as acceptors for organic bulk-heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 7345-7352.	5.2	68
130	High-content imaging and gene expression analysis to study cell–nanomaterial interactions: The effect of surface hydrophobicity. Biomaterials, 2014, 35, 9941-9950.	5.7	66
131	Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Journal of Materials Chemistry, 2004, 14, 690.	6.7	65
132	Nanomaterial-based bioorthogonal nanozymes for biological applications. Chemical Society Reviews, 2021, 50, 13467-13480.	18.7	65
133	Model Systems for Flavoenzyme Activity. Regulation of Flavin Recognition via Modulation of Receptor Hydrogen-Bond Donorâ" Acceptor Properties. Journal of Organic Chemistry, 1997, 62, 836-839.	1.7	64
134	Quantitative Tracking of Protein Trafficking to the Nucleus Using Cytosolic Protein Delivery by Nanoparticle-Stabilized Nanocapsules. Bioconjugate Chemistry, 2015, 26, 1004-1007.	1.8	64
135	High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids. ACS Nano, 2016, 10, 5293-5303.	7.3	64
136	Programmed Self-Assembly of Hierarchical Nanostructures through Protein–Nanoparticle Coengineering. ACS Nano, 2017, 11, 3456-3462.	7.3	64
137	Effects of Branched Ligands on the Structure and Stability of Monolayers on Gold Nanoparticles. Langmuir, 2002, 18, 2368-2373.	1.6	63
138	Bioorthogonal Nanozymes: Progress towards Therapeutic Applications. Trends in Chemistry, 2019, 1, 90-98.	4.4	63
139	Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. Analytical and Bioanalytical Chemistry, 2010, 396, 1025-1035.	1.9	62
140	Dopamine coated Fe ₃ O ₄ nanoparticles as enzyme mimics for the sensitive detection of bacteria. Chemical Communications, 2017, 53, 12306-12308.	2.2	62
141	A Rapid and Robust Diagnostic for Liver Fibrosis Using a Multichannel Polymer Sensor Array. Advanced Materials, 2018, 30, e1800634.	11.1	62
142	Thermally Gated Bio-orthogonal Nanozymes with Supramolecularly Confined Porphyrin Catalysts for Antimicrobial Uses. CheM, 2020, 6, 1113-1124.	5.8	62
143	Control of Intra- <i>versus</i> Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes. ACS Nano, 2019, 13, 229-235.	7.3	61
144	Active Targeting of the Nucleus Using Nonpeptidic Boronate Tags. Journal of the American Chemical Society, 2017, 139, 8547-8551.	6.6	60

#	Article	IF	CITATIONS
145	Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. Advanced Functional Materials, 2020, 30, 2004942.	7.8	59
146	Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts. Journal of Materials Chemistry, 2001, 11, 2181-2191.	6.7	58
147	Chiral Plasmonic Fields Probe Structural Order of Biointerfaces. Journal of the American Chemical Society, 2018, 140, 8509-8517.	6.6	58
148	In situ activation of therapeutics through bioorthogonal catalysis. Advanced Drug Delivery Reviews, 2021, 176, 113893.	6.6	58
149	Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nature Nanotechnology, 2022, 17, 86-97.	15.6	57
150	Isomeric Control of Protein Recognition with Amino Acid―and Dipeptideâ€Functionalized Gold Nanoparticles. Chemistry - A European Journal, 2008, 14, 143-150.	1.7	56
151	Superchiral Plasmonic Phase Sensitivity for Fingerprinting of Protein Interface Structure. ACS Nano, 2017, 11, 12049-12056.	7.3	56
152	Modulation of the Interparticle Spacing and Optical Behavior of Nanoparticle Ensembles Using a Single Protein Spacer. Chemistry of Materials, 2005, 17, 6317-6322.	3.2	55
153	Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures. Nano Letters, 2016, 16, 5806-5814.	4.5	54
154	Effective detection of bacteria using metal nanoclusters. Nanoscale, 2019, 11, 22172-22181.	2.8	54
155	Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst, The, 2009, 134, 2183.	1.7	52
156	Nanomanufacturing of biomaterials. Materials Today, 2012, 15, 478-485.	8.3	51
157	Cationic Silver Nanoclusters as Potent Antimicrobials against Multidrug-Resistant Bacteria. ACS Omega, 2018, 3, 16721-16727.	1.6	50
158	Recognition of glycosaminoglycan chemical patterns using an unbiased sensor array. Chemical Science, 2013, 4, 2076.	3.7	48
159	Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Advances, 2015, 5, 105551-105559.	1.7	48
160	NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification. Sensors and Actuators B: Chemical, 2018, 255, 2725-2732.	4.0	48
161	DNA-mediated assembly of iron platinum (FePt) nanoparticles. Journal of Materials Chemistry, 2007, 17, 52-55.	6.7	47
162	Bacterial adhesion on hybrid cationic nanoparticle–polymer brush surfaces: lonic strength tunes capture from monovalent to multivalent binding. Colloids and Surfaces B: Biointerfaces, 2011, 87, 109-115.	2.5	47

#	Article	IF	CITATIONS
163	Bacteriophage-based nanoprobes for rapid bacteria separation. Nanoscale, 2015, 7, 16230-16236.	2.8	47
164	Surface confined pseudorotaxanes with electrochemically controllable complexation propertiesElectronic supplementary information (ESI) available: further experimental and theoretical data. See http://www.rsc.org/suppdata/jm/b3/b306274k/. Journal of Materials Chemistry, 2003, 13, 2111.	6.7	46
165	Antimicrobial surfaces containing cationic nanoparticles: How immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Colloids and Surfaces B: Biointerfaces, 2015, 125, 255-263.	2.5	46
166	Structural control of the monolayer stability of water-soluble gold nanoparticles. Journal of Materials Chemistry, 2008, 18, 70-73.	6.7	45
167	Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise. Current Opinion in Colloid and Interface Science, 2014, 19, 49-55.	3.4	45
168	Cold nanoparticle-PPE constructs as biomolecular material mimics: understanding the electrostatic and hydrophobic interactions. Soft Matter, 2009, 5, 607-612.	1.2	44
169	Immunomodulatory Effects of Coated Gold Nanoparticles in LPS-Stimulated InÂVitro and InÂVivo Murine Model Systems. CheM, 2016, 1, 320-327.	5.8	44
170	Photocleavable Hydrogels for Lightâ€Triggered siRNA Release. Advanced Healthcare Materials, 2016, 5, 305-310.	3.9	44
171	Stabilization of α-chymotrypsin at air–water interface through surface binding to gold nanoparticle scaffolds. Soft Matter, 2006, 2, 558-560.	1.2	43
172	â€~Bricks and mortar' nanoparticle self-assembly using polymers. Polymer International, 2007, 56, 461-466.	1.6	43
173	Control of Surface Tension at Liquid–Liquid Interfaces Using Nanoparticles and Nanoparticle–Protein Complexes. Langmuir, 2012, 28, 2023-2027.	1.6	43
174	Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chemical Communications, 2012, 48, 4543.	2.2	42
175	Aromatic Stacking Interactions in Flavin Model Systems. Accounts of Chemical Research, 2013, 46, 1000-1009.	7.6	42
176	A Multichannel Biosensor for Rapid Determination of Cell Surface Glycomic Signatures. ACS Central Science, 2015, 1, 191-197.	5.3	42
177	Direct patterning of quantum dot nanostructures via electron beam lithography. Journal of Materials Chemistry, 2011, 21, 16859.	6.7	41
178	Immobilization and Stabilization of Lipase (CaLB) through Hierarchical Interfacial Assembly. Biomacromolecules, 2014, 15, 3915-3922.	2.6	41
179	Sensing by Smell: Nanoparticle–Enzyme Sensors for Rapid and Sensitive Detection of Bacteria with Olfactory Output. ACS Nano, 2017, 11, 5339-5343.	7.3	41
180	Water-Dispersible and Biocompatible Iron Carbide Nanoparticles with High Specific Absorption Rate. ACS Nano, 2019, 13, 2870-2878.	7.3	41

#	Article	IF	CITATIONS
181	Nanoimprinted Polyethyleneimine: A Multimodal Template for Nanoparticle Assembly and Immobilization. Advanced Functional Materials, 2009, 19, 2937-2942.	7.8	40
182	Determination of the Intracellular Stability of Gold Nanoparticle Monolayers Using Mass Spectrometry. Analytical Chemistry, 2012, 84, 4321-4326.	3.2	40
183	Regulating exocytosis of nanoparticles via host–guest chemistry. Organic and Biomolecular Chemistry, 2015, 13, 2474-2479.	1.5	40
184	"Cleaning―of nanoparticle inhibitors via proteolysis of adsorbed proteins. Chemical Communications, 2006, , 2338-2340.	2.2	39
185	Spatial control of chemical processes on nanostructures through nano-localized water heating. Nature Communications, 2016, 7, 10946.	5.8	39
186	Rapid Identification of Biofilms Using a Robust Multichannel Polymer Sensor Array. ACS Applied Materials & Interfaces, 2019, 11, 11202-11208.	4.0	39
187	Cellular imaging of endosome entrapped small gold nanoparticles. MethodsX, 2015, 2, 306-315.	0.7	38
188	Externally controlled drug release using a gold nanorod contained composite membrane. Nanoscale, 2016, 8, 11949-11955.	2.8	38
189	Development of Engineered Bacteriophages for <i>Escherichia coli</i> Detection and High-Throughput Antibiotic Resistance Determination. ACS Sensors, 2017, 2, 484-489.	4.0	38
190	Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Molecular Systems Design and Engineering, 2017, 2, 624-628.	1.7	36
191	Dual-Mode Mass Spectrometric Imaging for Determination of <i>in Vivo</i> Stability of Nanoparticle Monolayers. ACS Nano, 2017, 11, 7424-7430.	7.3	36
192	Model Systems for Flavoenzyme Activity. Control of Flavin Recognition via Specific Electrostatic Interactions. Organic Letters, 2001, 3, 1531-1534.	2.4	35
193	The Role of Surface Functionality in Nanoparticle Exocytosis. Advanced Healthcare Materials, 2014, 3, 1200-1202.	3.9	35
194	Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Analyst, The, 2016, 141, 2418-2425.	1.7	35
195	Light-triggered RNA release and induction of hMSC osteogenesis via photodegradable, dual-crosslinked hydrogels. Nanomedicine, 2016, 11, 1535-1550.	1.7	35
196	Accessing Intracellular Targets through Nanocarrier-Mediated Cytosolic Protein Delivery. Trends in Pharmacological Sciences, 2020, 41, 743-754.	4.0	35
197	Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics. Nanomedicine, 2014, 9, 1487-1498.	1.7	34
198	Phytochemical-Based Nanocomposites for the Treatment of Bacterial Biofilms. ACS Infectious Diseases, 2019, 5, 1590-1596.	1.8	34

#	Article	IF	CITATIONS
199	Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture. Journal of the American Chemical Society, 2021, 143, 4758-4765.	6.6	34
200	Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics. Journal of the American Chemical Society, 2022, 144, 12893-12900.	6.6	34
201	Quantitative Differentiation of Cell Surface-Bound and Internalized Cationic Gold Nanoparticles Using Mass Spectrometry. ACS Nano, 2016, 10, 6731-6736.	7.3	33
202	Differentiation of Cancer Stem Cells through Nanoparticle Surface Engineering. ACS Nano, 2020, 14, 15276-15285.	7.3	33
203	Chemosensory models: approaches and applications of differential sensing. Current Opinion in Chemical Biology, 2010, 14, 683-684.	2.8	32
204	Direct Patterning of Engineered Ionic Gold Nanoparticles via Nanoimprint Lithography. Advanced Materials, 2012, 24, 6330-6334.	11.1	32
205	Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Analytical Chemistry, 2017, 89, 3009-3014.	3.2	32
206	Cytosolic and Nuclear Delivery of CRISPR/Cas9-ribonucleoprotein for Gene Editing Using Arginine Functionalized Gold Nanoparticles. Bio-protocol, 2017, 7, .	0.2	32
207	In Vivo Editing of Macrophages through Systemic Delivery of CRISPR as9â€Ribonucleoproteinâ€Nanoparticle Nanoassemblies. Advanced Therapeutics, 2019, 2, 1900041.	1.6	32
208	Dual antimicrobial-loaded biodegradable nanoemulsions for synergistic treatment of wound biofilms. Journal of Controlled Release, 2022, 347, 379-388.	4.8	32
209	Adsorption/Desorption of Mono- and Diblock Copolymers on Surfaces Using Specific Hydrogen Bonding Interactions. Langmuir, 2004, 20, 5958-5964.	1.6	31
210	Nickelâ€Ionâ€Mediated Control of the Stoichiometry of Hisâ€Tagged Protein/Nanoparticle Interactions. Macromolecular Bioscience, 2009, 9, 174-178.	2.1	31
211	Reusable biocatalytic crosslinked microparticles self-assembled from enzyme-nanoparticle complexes. Chemical Communications, 2011, 47, 12077.	2.2	31
212	Inkjet-Printed Gold Nanoparticle Surfaces for the Detection of Low Molecular Weight Biomolecules by Laser Desorption/Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1931-1937.	1.2	31
213	Dual Functionalization of Nanoparticles for Generating Corona-Free and Noncytotoxic Silica Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 41917-41923.	4.0	31
214	Stimuli responsive surfaces through recognition-mediated polymer modification. Chemical Communications, 2005, , 5157.	2.2	30
215	The role of ligand coordination on the cytotoxicity of cationic quantum dots in HeLa cells. Nanoscale, 2013, 5, 12140.	2.8	30
216	Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. Journal of Materials Chemistry C, 2015, 3, 7561-7566.	2.7	30

#	Article	IF	CITATIONS
217	Fabrication of Robust Protein Films Using Nanoimprint Lithography. Advanced Materials, 2015, 27, 6251-6255.	11.1	29
218	Using the power of organic synthesis for engineering the interactions of nanoparticles with biological systems. Nano Today, 2016, 11, 31-40.	6.2	29
219	Reversible Hierarchical Assembly of Trimeric Coiled-Coil Peptides into Banded Nano- and Microstructures. Journal of the American Chemical Society, 2018, 140, 13028-13033.	6.6	29
220	Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110522.	2.5	29
221	Binding and templation of nanoparticle receptors to peptide α-helices through surface recognition. Chemical Communications, 2007, , 2796-2798.	2.2	28
222	Chemically Directed Immobilization of Nanoparticles onto Gold Substrates for Orthogonal Assembly Using Dithiocarbamate Bond Formation. ACS Applied Materials & Interfaces, 2010, 2, 795-799.	4.0	28
223	Cytosolic delivery of large proteins using nanoparticle-stabilized nanocapsules. Nanoscale, 2016, 8, 18038-18041.	2.8	28
224	Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment. Journal of Controlled Release, 2018, 283, 235-240.	4.8	28
225	Purification and separation of ultra-small metal nanoclusters. Advances in Colloid and Interface Science, 2020, 276, 102090.	7.0	28
226	Strategies for Fabricating Protein Films for Biomaterial Applications. Advanced Sustainable Systems, 2021, 5, .	2.7	28
227	Rapid Coating of Surfaces with Functionalized Nanoparticles for Regulation of Cell Behavior. Advanced Materials, 2014, 26, 3310-3314.	11.1	27
228	Effect of nano-scale curvature on the intrinsic blood coagulation system. Nanoscale, 2014, 6, 14484-14487.	2.8	27
229	Rapid purification of gold nanorods for biomedical applications. MethodsX, 2014, 1, 118-123.	0.7	27
230	Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers. ACS Nano, 2021, 15, 6562-6572.	7.3	27
231	Antimicrobial Peptide-Loaded Pectolite Nanorods for Enhancing Wound-Healing and Biocidal Activity of Titanium. ACS Applied Materials & amp; Interfaces, 2021, 13, 28764-28773.	4.0	27
232	Nanotherapeutics using all-natural materials. Effective treatment of wound biofilm infections using crosslinked nanoemulsions. Materials Horizons, 2021, 8, 1776-1782.	6.4	27
233	Supramolecular tailoring of protein–nanoparticle interactions using cucurbituril mediators. Chemical Communications, 2014, 50, 5565.	2.2	26
234	Cytocompatible Catalyst-Free Photodegradable Hydrogels for Light-Mediated RNA Release To Induce hMSC Osteogenesis. ACS Biomaterials Science and Engineering, 2017, 3, 2011-2023.	2.6	26

#	Article	IF	CITATIONS
235	Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts. Advanced Healthcare Materials, 2021, 10, e2001627.	3.9	26
236	Specific Hydrogen-Bond-Mediated Recognition and Modification of Surfaces Using Complementary Functionalized Polymers. Langmuir, 2003, 19, 7089-7093.	1.6	25
237	Pathway switching in templated virus-like particle assembly. Soft Matter, 2012, 8, 4571.	1.2	25
238	Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS). Nanoscale, 2013, 5, 5063.	2.8	25
239	Synthesis and characterisation of push–pull flavin dyes with efficient second harmonic generation (SHC) properties. RSC Advances, 2017, 7, 24462-24469.	1.7	25
240	Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. Journal of the American Chemical Society, 2018, 140, 2421-2425.	6.6	25
241	Selective treatment of intracellular bacterial infections using host cell-targeted bioorthogonal nanozymes. Materials Horizons, 2022, 9, 1489-1494.	6.4	25
242	Photochemical Control of the Macroconformation of Polystyrene Using Azobenzene Side Chains. Macromolecules, 2000, 33, 9173-9175.	2.2	24
243	Nanoparticle–dendrimer hybrid nanocapsules for therapeutic delivery. Nanomedicine, 2016, 11, 1571-1578.	1.7	24
244	A layer-by-layer assembled MoS ₂ thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. Nanoscale, 2017, 9, 10854-10860.	2.8	24
245	Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27854-27861.	3.3	24
246	The first redox controlled hydrogen bonded three-pole switch. Chemical Communications, 2001, , 1954-1955.	2.2	23
247	Reply to 'Measuring conductivity of living Geobacter sulfurreducens biofilms'. Nature Nanotechnology, 2016, 11, 913-914.	15.6	23
248	Nanoparticles binding to lipid membranes: from vesicle-based gels to vesicle tubulation and destruction. Nanoscale, 2019, 11, 18464-18474.	2.8	23
249	High-content and high-throughput identification of macrophage polarization phenotypes. Chemical Science, 2020, 11, 8231-8239.	3.7	23
250	Protection and Isolation of Bioorthogonal Metal Catalysts by Using Monolayerâ€Coated Nanozymes. ChemBioChem, 2020, 21, 2759-2763.	1.3	23
251	Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. Materials Horizons, 2021, 8, 3424-3431.	6.4	23
252	Thermally Controlled Formation of Fullereneâ^'Diene Oligomers and Copolymers. Macromolecules, 1997, 30, 3949-3951.	2.2	22

#	Article	IF	CITATIONS
253	Fabrication of Multiresponsive Bioactive Nanocapsules through Orthogonal Self-Assembly. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	22
254	Rapid phenotyping of cancer stem cells using multichannel nanosensor arrays. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1931-1939.	1.7	22
255	Cell Alignment using Patterned Biocompatible Gold Nanoparticle Templates. Small, 2012, 8, 1209-1213.	5.2	21
256	Solubilization of Hydrophobic Catalysts Using Nanoparticle Hosts. Small, 2018, 14, 1702198.	5.2	21
257	Biodegradable Poly(lactic acid) Stabilized Nanoemulsions for the Treatment of Multidrug-Resistant Bacterial Biofilms. ACS Applied Materials & Interfaces, 2021, 13, 40325-40331.	4.0	21
258	Biocompatible Charged and Uncharged Surfaces Using Nanoparticle Films. Advanced Materials, 2010, 22, 5420-5423.	11.1	20
259	Flavin as a photo-active acceptor for efficient energy and charge transfer in a model donor–acceptor system. Physical Chemistry Chemical Physics, 2012, 14, 6749.	1.3	20
260	Optimizing the selective recognition of protein isoforms through tuning of nanoparticle hydrophobicity. Nanoscale, 2014, 6, 6492.	2.8	20
261	Dynamically crosslinked polymer nanocomposites to treat multidrug-resistant bacterial biofilms. Nanoscale, 2018, 10, 18651-18656.	2.8	20
262	Functionalized Polymers Enhance Permeability of Antibiotics in Gramâ€Negative MDR Bacteria and Biofilms for Synergistic Antimicrobial Therapy. Advanced Therapeutics, 2020, 3, 2000005.	1.6	20
263	Protein Delivery: If Your GFP (or Other Small Protein) Is in the Cytosol, It Will Also Be in the Nucleus. Bioconjugate Chemistry, 2021, 32, 891-896.	1.8	20
264	Recognition-Mediated Assembly of Nanoparticle-Diblock Copolymer Micelles with Controlled Size. Chemistry of Materials, 2006, 18, 5404-5409.	3.2	18
265	Metal Nanoparticle Wires Formed by an Integrated Nanomoldingâ^'Chemical Assembly Process: Fabrication and Properties. ACS Nano, 2010, 4, 7660-7666.	7.3	18
266	Nanoparticle–protein interactions: Water is the key. MRS Bulletin, 2014, 39, 1069-1073.	1.7	18
267	Chemically Engineered Nanoparticle–Protein Interface for Realâ€Time Cellular Oxidative Stress Monitoring. Small, 2016, 12, 3775-3779.	5.2	18
268	Facile method to synthesize dopamine-capped mixed ferrite nanoparticles and their peroxidase-like activity. Journal Physics D: Applied Physics, 2017, 50, 11LT02.	1.3	18
269	Delivery of Proteins and Nucleic Acids: Achievements and Challenges. Bioconjugate Chemistry, 2019, 30, 261-262.	1.8	18
270	Fabrication of Collagen Films with Enhanced Mechanical and Enzymatic Stability through Thermal Treatment in Fluorous Media. ACS Applied Materials & Interfaces, 2020, 12, 6590-6597.	4.0	18

#	Article	IF	CITATIONS
271	Macrophage-Encapsulated Bioorthogonal Nanozymes for Targeting Cancer Cells. Jacs Au, 2022, 2, 1679-1685.	3.6	18
272	The electrochemically tuneable recognition properties of an electropolymerised flavin derivative. Chemical Communications, 2004, , 2722.	2.2	17
273	Binding studies of cucurbit[7]uril with gold nanoparticles bearing different surface functionalities. Tetrahedron Letters, 2015, 56, 3653-3657.	0.7	17
274	Hybrid Organic–Inorganic Colloidal Composite â€~Sponges' via Internal Crosslinking. Small, 2015, 11, 1302-1309.	5.2	17
275	Biochemical and biomechanical drivers of cancer cell metastasis, drug response and nanomedicine. Drug Discovery Today, 2016, 21, 1489-1494.	3.2	17
276	Translation of protein charge and hydrophilicity to materials surface properties using thermal treatment in fluorous media. Materials Horizons, 2018, 5, 268-274.	6.4	17
277	Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. Journal of Materials Chemistry B, 2020, 8, 9466-9480.	2.9	17
278	The donor atom-? interaction of sulfur with flavin. A density functional investigation. Heteroatom Chemistry, 1998, 9, 605-606.	0.4	16
279	Integration of Recognition Elements with Macromolecular Scaffolds:Â Effects on Polymer Self-Assembly in the Solid State. Macromolecules, 2004, 37, 4931-4939.	2.2	16
280	Biocidal and Antifouling Chlorinated Protein Films. ACS Biomaterials Science and Engineering, 2016, 2, 1862-1866.	2.6	16
281	Fingerprinting antibiotics with PAE-based fluorescent sensor arrays. Polymer Chemistry, 2017, 8, 2723-2732.	1.9	16
282	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	7.3	16
283	Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies. Biomaterials, 2020, 232, 119737.	5.7	16
284	Model systems for flavoenzyme activity. The effects of specific hydrogen bonds on the13C and1H NMR of flavins. , 1996, 9, 158-162.		15
285	Divergent Surface Functionalization Using Acid Fluoride-Functionalized Self-Assembled Monolayers. Langmuir, 2000, 16, 1460-1462.	1.6	15
286	Supramolecular Functionalization of Electron-Beam Generated Nanostructures. Langmuir, 2011, 27, 1543-1545.	1.6	15
287	Excited State Charge Redistribution and Dynamics in the Donor-ï€-Acceptor Flavin Derivative ABFL. Journal of Physical Chemistry B, 2013, 117, 15684-15694.	1.2	15
288	Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules. Nanotechnology, 2016, 27, 374001.	1.3	15

#	Article	IF	CITATIONS
289	Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent. Journal of Agricultural and Food Chemistry, 2017, 65, 1907-1914.	2.4	15
290	Gradient and Patterned Protein Films Stabilized via Nanoimprint Lithography for Engineered Interactions with Cells. ACS Applied Materials & Interfaces, 2017, 9, 42-46.	4.0	15
291	Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2019, 11, 2814-2820.	4.0	15
292	Cytosolic Delivery of Functional Proteins <i>In Vitro</i> through Tunable Gigahertz Acoustics. ACS Applied Materials & Interfaces, 2020, 12, 15823-15829.	4.0	15
293	Activity of Biodegradable Polymeric Nanosponges against Dual-Species Bacterial Biofilms. ACS Biomaterials Science and Engineering, 2021, 7, 1780-1786.	2.6	15
294	Accessibility of cylindrical channels within patterned mesoporous silica films using nanoparticle diffusion. Journal of Materials Chemistry, 2009, 19, 70-74.	6.7	14
295	Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Gold Nanoparticles in Biological Samples Using the Synergy between Added Matrix and the Gold Core. Analytical Chemistry, 2015, 87, 12145-12150.	3.2	14
296	Dual Mass Spectrometric Tissue Imaging of Nanocarrier Distributions and Their Biochemical Effects. Analytical Chemistry, 2020, 92, 2011-2018.	3.2	14
297	Communication of electronic information over nanometer distances with supramolecular transduction. An experimental and density functional investigation â€. Perkin Transactions II RSC, 2000, , 1309-1313.	1.1	13
298	Model systems for flavoenzyme activity: flavin-functionalised SAMs as models for probing redox modulation through hydrogen bondingElectronic supplementary information (ESI) available: synthesis and spectroscopic details; cyclic voltammograms. See http://www.rsc.org/suppdata/cc/b3/b307980p/. Chemical Communications, 2003, , 2468.	2.2	13
299	Controlled nanoparticle assembly through protein conformational changes. Soft Matter, 2008, 4, 751.	1.2	13
300	Insulin-based regulation of glucose-functionalized nanoparticle uptake in muscle cells. Journal of Materials Chemistry B, 2014, 2, 4610.	2.9	13
301	Hierarchical Structures of Polystyrene-block-poly(2-vinylpyridine)/Palladium–Pincer Surfactants: Effect of Weak Surfactant–Polymer Interactions on the Morphological Behavior. Macromolecules, 2014, 47, 5774-5783.	2.2	13
302	Impedance Spectroscopy of Ionic Ligandâ€Modulated Charge Transport of Gold Nanoparticle Films. Small, 2015, 11, 3814-3821.	5.2	13
303	Tuning the interactions of PEG-coated gold nanorods with BSA and model proteins through insertion of amino or carboxylate groups. Journal of Inorganic Biochemistry, 2015, 150, 120-125.	1.5	13
304	Arrayâ€basierte Sensorik mit der "chemischen Nase―in der Diagnostik und Wirkstoffentdeckung. Angewandte Chemie, 2019, 131, 5244-5255.	1.6	13
305	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
306	Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. Nanomaterials, 2021, 11, 1001.	1.9	13

#	Article	IF	CITATIONS
307	Preparation of 2 nm Gold Nanoparticles for In Vitro and In Vivo Applications. Methods in Molecular Biology, 2013, 1025, 3-8.	0.4	13
308	Engineered Polymer-Supported Biorthogonal Nanocatalysts Using Flash Nanoprecipitation. ACS Applied Materials & Interfaces, 2022, 14, 31594-31600.	4.0	13
309	Anthracene-Functionalized Polystyrene Random Copolymers:Â Effects of Side-Chain Modification on Polymer Structure and Behavior. Macromolecules, 2004, 37, 92-98.	2.2	12
310	Nanoparticle Immobilization on Surfaces via Activatable Heterobifunctional Dithiocarbamate Bond Formation. Advanced Materials, 2008, 20, 4185-4188.	11.1	12
311	Chemical nose sensors: an alternative strategy for cancer diagnosis. Expert Review of Molecular Diagnostics, 2013, 13, 111-113.	1.5	12
312	Efficient <i>in vivo</i> wound healing using noble metal nanoclusters. Nanoscale, 2021, 13, 6531-6537.	2.8	12
313	Protein-Based Films as Antifouling and Drug-Eluting Antimicrobial Coatings for Medical Implants. ACS Applied Materials & Interfaces, 2021, 13, 48301-48307.	4.0	12
314	Cytosolic Protein Delivery Using Modular Biotin–Streptavidin Assembly of Nanocomposites. ACS Nano, 2022, 16, 7323-7330.	7.3	12
315	Organic chemistry meets polymers, nanoscience, therapeutics and diagnostics. Beilstein Journal of Organic Chemistry, 2016, 12, 1638-1646.	1.3	11
316	An array-based nanosensor for detecting cellular responses in macrophages induced by femtomolar levels of pesticides. Chemical Communications, 2022, 58, 2890-2893.	2.2	11
317	Title is missing!. Structural Chemistry, 2000, 11, 1-7.	1.0	10
318	The synthesis of a pyrrole-functionalized cyclobis(paraquat-p-phenylene) derivative and its corresponding [2]rotaxane and [2]catenane and their subsequent deposition onto an electrode surface. Tetrahedron, 2007, 63, 11114-11121.	1.0	10
319	â€~Lock and key' control of optical properties in a push–pull system. Chemical Communications, 2008, , 1653.	2.2	10
320	Photooxidation of Nanopatterned Poly(chloromethylstyrene): Direct Formation of Crosslinked Aldehydeâ€Functionalized Films for Chemical Functionalization and Bioconjugation. Macromolecular Rapid Communications, 2010, 31, 910-914.	2.0	10
321	Gold nanoparticle self-assembly promoted by a non-covalent, charge-complemented coiled-coil peptide. Journal of Materials Chemistry, 2010, 20, 5608.	6.7	10
322	Tuning DNA Condensation with Zwitterionic Polyamidoamine (zPAMAM) Dendrimers. Macromolecules, 2017, 50, 8202-8211.	2.2	10
323	Challenges in Application of Langmuir Monolayer Studies To Determine the Mechanisms of Bactericidal Activity of Ruthenium Complexes. Langmuir, 2017, 33, 14167-14174.	1.6	10
324	Stable and oxidant responsive zwitterionic nanoclusters. Nanoscale, 2018, 10, 7382-7386.	2.8	10

#	Article	IF	CITATIONS
325	Simple and robust polymer-based sensor for rapid cancer detection using serum. Chemical Communications, 2019, 55, 11458-11461.	2.2	10
326	Tuneable electrochemical interactions between polystyrenes with anthracenyl and tetrathiafulvalenyl sidechains. Chemical Communications, 2001, , 2232-2233.	2.2	9
327	Two- and Three-Dimensional Network of Nanoparticles via Polymer-Mediated Self-Assembly. ACS Macro Letters, 2012, 1, 396-399.	2.3	9
328	Triptycene as a Supramolecular Additive in PTB7:PCBM Blends and Its Influence on Photovoltaic Properties. ACS Applied Materials & Interfaces, 2018, 10, 24665-24678.	4.0	9
329	Polymeric Nanoparticles Active against Dual-Species Bacterial Biofilms. Molecules, 2021, 26, 4958.	1.7	9
330	Self-assembly of fluorocarbon-coated FePt nanoparticles for controlling structure and wettability of surfaces. Soft Matter, 2009, 5, 1247-1250.	1.2	8
331	Interfacing Inorganic Nanoparticles with Biology. Bioconjugate Chemistry, 2017, 28, 1-2.	1.8	8
332	Matrix-Incorporated Polydopamine Layer as a Simple, Efficient, and Universal Coating for Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis. ACS Applied Materials & Interfaces, 2018, 10, 36361-36368.	4.0	8
333	In situ Generation of Antibiotics using Bioorthogonal "Nanofactories― Microbiology Insights, 2021, 14, 117863612199712.	0.9	8
334	Direct photopatterning of light-activated gold nanoparticles. Journal of Materials Chemistry, 2011, 21, 14156.	6.7	7
335	Environmentally responsive histidine–carboxylate zipper formation between proteins and nanoparticles. Nanoscale, 2014, 6, 8873-8877.	2.8	7
336	Fabrication of Functional Nanofibers Through Postâ€Nanoparticle Functionalization. Macromolecular Rapid Communications, 2015, 36, 678-683.	2.0	7
337	Zwitterionic Ligands Bound to Cdse/Zns Quantum Dots Prevent Adhesion to Mammalian Cells. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 2302-2306.	0.8	7
338	Toward Virus-Like Surface Plasmon Strain Sensors. Journal of Physical Chemistry B, 2016, 120, 5896-5906.	1.2	7
339	Nano Assessing Nano: Nanosensorâ€Enabled Detection of Cell Phenotypic Changes Identifies Nanoparticle Toxicological Effects at Ultra‣ow Exposure Levels. Small, 2020, 16, 2002084.	5.2	7
340	Polymer – Nanoparticle Assemblies for Array Based Sensing. Current Organic Chemistry, 2015, 19, 1054-1062.	0.9	7
341	High affinity protein surface binding through co-engineering of nanoparticles and proteins. Nanoscale, 2022, 14, 2411-2418.	2.8	7
342	Stereoisomeric p-Quinodimethanes. Journal of Organic Chemistry, 1998, 63, 379-382.	1.7	6

#	Article	IF	CITATIONS
343	Bio and Nano Working Together: Engineering the Proteinâ€Nanoparticle Interface. Israel Journal of Chemistry, 2013, 53, 521-529.	1.0	6
344	Tailored Functional Surfaces Using Nanoparticle and Protein "Nanobrick―Coatings. Langmuir, 2019, 35, 10993-11006.	1.6	6
345	Nanodelivery vehicles induce remote biochemical changes in vivo. Nanoscale, 2021, 13, 12623-12633.	2.8	6
346	Cell-Based Chemical Safety Assessment and Therapeutic Discovery Using Array-Based Sensors. International Journal of Molecular Sciences, 2022, 23, 3672.	1.8	6
347	Proteins and Nanoparticles: Covalent and Noncovalent Conjugates. , 0, , 65-78.		5
348	Molecular recognition-induced liquid crystals from complementary diaminopyridine and flavin dyads. Supramolecular Chemistry, 2010, 22, 691-696.	1.5	5
349	Facile synthesis of cationic gold nanoparticles with controlled size and surface plasmon resonance. RSC Advances, 2016, 6, 92007-92010.	1.7	5
350	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
351	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
352	Role of Ionic Strength in the Formation of Stable Supramolecular Nanoparticle–Protein Conjugates for Biosensing. International Journal of Molecular Sciences, 2022, 23, 2368.	1.8	5
353	Flavinâ€Functionalized Amphiphilic Block Copolymer Gels. Macromolecular Chemistry and Physics, 2012, 213, 1758-1767.	1.1	4
354	Organic solar cells based on acceptor-functionalized diketopyrrolopyrrole derivatives. Journal of Photonics for Energy, 2015, 5, 057215.	0.8	4
355	Probing the protein–nanoparticle interface: the role of aromatic substitution pattern on affinity. Supramolecular Chemistry, 2015, 27, 123-126.	1.5	4
356	Advances in CRISPR/Cas9 Technology for <i>in Vivo</i> Translation. Biological and Pharmaceutical Bulletin, 2019, 42, 304-311.	0.6	4
357	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
358	A modified and simplified method for purification of gold nanoparticles. MethodsX, 2020, 7, 100896.	0.7	4
359	A General Method for Intracellular Protein Delivery through â€~E-tag' Protein Engineering and Arginine Functionalized Gold Nanoparticles. Bio-protocol, 2017, 7, .	0.2	4
360	A Polymer-Based Multichannel Sensor for Rapid Cell-Based Screening of Antibiotic Mechanisms and Resistance Development. ACS Applied Materials & Interfaces, 2022, 14, 27515-27522.	4.0	4

#	Article	IF	CITATIONS
361	Flavin Mononucleotide as a Probe for Dopant Encapsulation in Solâ^'Gel Silicates. Langmuir, 2002, 18, 9149-9152.	1.6	3
362	Crown Etherâ€Peptide Construct Selectively Kills Cancer Cells. Chemical Biology and Drug Design, 2008, 72, 1-2.	1.5	3
363	Structure and Self-Assembly of Amphiphilic Dendrimers in Water. , 0, , 259-306.		3
364	Glycodendrimers and other Macromolecules Bearing Multiple Carbohydrates. , 0, , 335-358.		3
365	Fluorescence resonance energy transfer in recognition-mediated polymer-quantum dot assemblies. Polymer Chemistry, 2012, 3, 3072.	1.9	3
366	Rapid and ultrasensitive detection of endocrine disrupting chemicals using a nanosensor-enabled cell-based platform. Chemical Communications, 2017, 53, 8794-8797.	2.2	3
367	Rapid evaluation of gold nanoparticle–lipid membrane interactions using a lipid/polydiacetylene vesicle sensor. Analyst, The, 2020, 145, 3049-3055.	1.7	3
368	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
369	Hypersound-Assisted Size Sorting of Microparticles on Inkjet-Patterned Protein Films. Langmuir, 2021, 37, 2826-2832.	1.6	3
370	Bioorthogonal Chemistry and Bioconjugation: Synergistic Tools for Biology and Biomedicine. Bioconjugate Chemistry, 2021, 32, 1409-1410.	1.8	3
371	Direct Cytosolic Delivery of Proteins Using Lyophilized and Reconstituted Polymer-Protein Assemblies. Pharmaceutical Research, 2022, , 1.	1.7	3
372	Kinetic trapping of host–guest complexes in a polymeric matrix. Chemical Communications, 2000, , 447-448.	2.2	2
373	Polymeric Capsules: Catalysis and Drug Delivery. , 0, , 179-205.		2
374	Translational Research: Bridging the Gap between Fundamental Research and the Clinic. Bioconjugate Chemistry, 2019, 30, 2989-2990.	1.8	2
375	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
376	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
377	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
378	Model systems for cofactor activity. Biomimetic reduction of vitamin K by 1,3-propanedithiol. Heteroatom Chemistry, 1996, 7, 293-294.	0.4	1

#	Article	IF	CITATIONS
379	Organic Redox Cofactors. Antioxidants and Redox Signaling, 2001, 3, 721-722.	2.5	1
380	A Brief Introduction to Supramolecular Chemistry in a Polymer Context. , 0, , 1-7.		1
381	Molecular Recognition Using Amphiphilic Macromolecules. , 0, , 9-36.		1
382	Bioinspired Supramolecular Design in Polymers for Advanced Mechanical Properties. , 0, , 235-258.		1
383	Supramolecular Polymerization of Peptides and Peptide Derivatives: Nanofibrous Materials. , 0, , 359-393.		1
384	Highlights from the latest articles in nanomaterial-based therapies for targeting cancer stem cells. Nanomedicine, 2015, 10, 3427-3429.	1.7	1
385	Synthesis and properties of pteridine-2,4-dione-functionalised oligothiophenes. RSC Advances, 2016, 6, 7999-8005.	1.7	1
386	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
387	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
388	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
389	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
390	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
391	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
392	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
393	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
394	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
395	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
396	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1

#	Article	IF	CITATIONS
397	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
398	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
399	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
400	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
401	Bioconjugate Biomaterials: Leveraging Biology for the Next Generation of Active Materials. Bioconjugate Chemistry, 2022, 33, 543-543.	1.8	1
402	Nanoparticles and Polymers. Bricks and Mortar Self-Assembly of Nanostructures. Materials Research Society Symposia Proceedings, 2001, 635, C1.3.1.	0.1	0
403	Intra-Monolayer Hydrogen-Bonding in Monolayer Protected Gold Clusters. Materials Research Society Symposia Proceedings, 2001, 635, C4.19.1.	0.1	Ο
404	A â€~Building Block' Approach To Mixed-Colloid Systems Through Electrostatic Self-Organization. Materials Research Society Symposia Proceedings, 2001, 676, 321.	0.1	0
405	Substrate Based "Bricks-and-Mortar―Self-Assembly of Spherical Nanoparticle Aggregates. Materials Research Society Symposia Proceedings, 2001, 676, 851.	0.1	Ο
406	A â€~Building Block' Approach To Mixed-Colloid Systems Through Electrostatic Self-Organization. Materials Research Society Symposia Proceedings, 2001, 635, C4.46.1.	0.1	0
407	Feature Article: Recognition-Mediated Assembly of Polymers. Polymer News, 2004, 29, 40-49.	0.1	Ο
408	Supramolecular Control of Mechanical Properties in Single Molecules, Interfaces, and Macroscopic Materials. , 0, , 37-62.		0
409	Hydrogen Bond Functionalized Block Copolymers and Telechelic Oligomers. , 0, , 63-102.		Ο
410	Noncovalent Side Chain Modification. , 0, , 103-136.		0
411	Sequence-Specific Hydrogen Bonded Units for Directed Association, Assembly, and Ligation. , 0, , 207-234.		Ο
412	Colorimetric Sensing and Biosensing Using Functionalized Conjugated Polymers. , 0, , 307-334.		0
413	Nanocomposites: Hybrid Organic-Inorganic Colloidal Composite â€~Sponges' via Internal Crosslinking (Small 11/2015). Small, 2015, 11, 1301-1301	5.2	0
414	Science in a Global Community. Bioconjugate Chemistry, 2017, 28, 279-281.	1.8	0

#	Article	IF	CITATIONS
415	2019 Editorial. Bioconjugate Chemistry, 2019, 30, 1-1.	1.8	Ο
416	Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series, 2019, , 1-34.	0.5	0
417	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	Ο
418	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
419	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	Ο
420	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
421	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	Ο
422	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
423	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	Ο
424	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
425	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
426	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
427	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	Ο
428	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
429	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	Ο
430	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
431	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
432	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0

#	Article	IF	CITATIONS
433	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
434	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
435	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
436	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
437	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
438	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
439	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
440	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
441	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
442	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
443	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
444	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
445	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
446	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
447	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
448	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
449	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
450	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0

#	Article	IF	CITATIONS
451	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
452	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
453	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
454	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
455	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
456	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
457	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
458	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
459	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
460	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
461	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
462	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
463	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
464	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
465	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	Ο
466	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
467	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
468	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0

#	Article	IF	CITATIONS
469	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	Ο
470	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
471	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	Ο
472	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
473	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	Ο
474	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
475	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	Ο
476	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
477	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
478	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
479	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
480	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
481	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
482	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
483	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
484	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
485	Editorial. Bioconjugate Chemistry, 2020, 31, 1-1.	1.8	0
486	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0

#	Article	IF	CITATIONS
487	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
488	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
489	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
490	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
491	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
492	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
493	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
494	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
495	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
496	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
497	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
498	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
499	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
500	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
501	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
502	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
503	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
504	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0

#	Article	IF	CITATIONS
505	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	о
506	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
507	Creation (and Recreation) of a Graduate Core Course in Chemistry. ACS Symposium Series, 2017, , 91-96.	0.5	Ο
508	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
509	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	Ο
510	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
511	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	Ο
512	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
513	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	Ο
514	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
515	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	Ο
516	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
517	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	Ο
518	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
519	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
520	30th Anniversary Reviews Editorial. Bioconjugate Chemistry, 2020, 31, 2649-2649.	1.8	0
521	Tailoring Nanoparticles for the Recognition of Biomacromolecule Surfaces. , 0, , 91-117.		Ο