Zhengbiao Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4877241/publications.pdf

Version: 2024-02-01

94 papers

2,463 citations

236833 25 h-index 254106 43 g-index

96 all docs 96 docs citations

times ranked

96

2105 citing authors

#	Article	lF	CITATIONS
1	Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications. Journal of Controlled Release, 2017, 252, 95-107.	4.8	168
2	Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme. Food Chemistry, 2016, 203, 308-313.	4.2	108
3	Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydrate Polymers, 2015, 122, 417-427.	5.1	99
4	The effect of xanthan on short and longâ€term retrogradation of rice starch. Starch/Staerke, 2013, 65, 702-708.	1.1	97
5	Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. International Journal of Biological Macromolecules, 2017, 101, 1004-1011.	3.6	90
6	Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum. Carbohydrate Polymers, 2016, 147, 243-250.	5.1	71
7	Maltooligosaccharide-forming amylase: Characteristics, preparation, and application. Biotechnology Advances, 2017, 35, 619-632.	6.0	66
8	Preparation, characterization and properties of starch-based adhesive for wood-based panels. International Journal of Biological Macromolecules, 2019, 134, 247-254.	3.6	66
9	In structure and in - vitro digestibility of waxy corn starch debranched by pullulanase. Food Hydrocolloids, 2017, 67, 104-110.	5.6	63
10	Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. Journal of Controlled Release, 2019, 313, 1-13.	4.8	63
11	Comparative study on the interaction between native corn starch and different hydrocolloids during gelatinization. International Journal of Biological Macromolecules, 2018, 116, 136-143.	3.6	55
12	Effects of montmorillonite addition on the performance of starch-based wood adhesive. Carbohydrate Polymers, 2015, 115, 394-400.	5.1	51
13	Effect of modification with $1,4-\hat{1}\pm$ -glucan branching enzyme on the rheological properties of cassava starch. International Journal of Biological Macromolecules, 2017, 103, 630-639.	3.6	48
14	Effects of heat pretreatment of starch on graft copolymerization reaction and performance of resulting starch-based wood adhesive. International Journal of Biological Macromolecules, 2017, 96, 11-18.	3.6	47
15	Binary and Tertiary Complex Based on Short-Chain Glucan and Proanthocyanidins for Oral Insulin Delivery. Journal of Agricultural and Food Chemistry, 2017, 65, 8866-8874.	2.4	43
16	Pasting and rheologic properties of potato starch and maize starch mixtures. Starch/Staerke, 2011, 63, 11-16.	1.1	42
17	Effects of hydrocolloids on corn starch retrogradation. Starch/Staerke, 2015, 67, 348-354.	1.1	41
18	Preparation and characterization of pullulanase debranched starches and their properties for drug controlled-release. RSC Advances, 2015, 5, 97066-97075.	1.7	39

#	Article	IF	CITATIONS
19	Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme. International Journal of Biological Macromolecules, 2017, 97, 679-687.	3.6	38
20	An investigation into the structure and digestibility of starch-oleic acid complexes prepared under various complexing temperatures. International Journal of Biological Macromolecules, 2019, 138, 966-974.	3 . 6	33
21	A two-stage modification method using 1,4-α-glucan branching enzyme lowers the in vitro digestibility of corn starch. Food Chemistry, 2020, 305, 125441.	4.2	33
22	Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. International Journal of Biological Macromolecules, 2020, 155, 273-285.	3 . 6	33
23	Ghost Structures, Pasting, Rheological and Textural Properties between <scp><i>M</i></scp> <i>esona Blumes</i> Gum and Various Starches. Journal of Food Quality, 2014, 37, 73-82.	1.4	32
24	Effect of amylose on pasting and rheological properties of corn starch/xanthan blends. Starch/Staerke, 2015, 67, 98-106.	1.1	30
25	Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Carbohydrate Polymers, 2021, 262, 117926.	5.1	30
26	Effects of acid hydrolysis intensity on the properties of starch/xanthan mixtures. International Journal of Biological Macromolecules, 2018, 106, 320-329.	3 . 6	27
27	Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Food Chemistry, 2019, 283, 170-176.	4.2	27
28	Effects of emulsifier on the bonding performance and freeze–thaw stability of starch-based wood adhesive. Cellulose, 2013, 20, 2583-2590.	2.4	26
29	Polyethylene glycols enhance the thermostability of \hat{l}^2 -cyclodextrin glycosyltransferase from Bacillus circulans. Food Chemistry, 2014, 164, 17-22.	4.2	26
30	An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Critical Reviews in Food Science and Nutrition, 2023, 63, 1930-1941.	5.4	25
31	Comparison of bioaccessibility of astaxanthin encapsulated in starch-based double emulsion with different structures. Carbohydrate Polymers, 2021, 272, 118475.	5.1	25
32	Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films. International Journal of Biological Macromolecules, 2018, 111, 959-966.	3 . 6	23
33	Evolutionary Stability of Salt Bridges Hints Its Contribution to Stability of Proteins. Computational and Structural Biotechnology Journal, 2019, 17, 895-903.	1.9	23
34	An Innovative Short-Clustered Maltodextrin as Starch Substitute for Ameliorating Postprandial Glucose Homeostasis. Journal of Agricultural and Food Chemistry, 2021, 69, 354-367.	2.4	23
35	Met349 Mutations Enhance the Activity of 1,4-α-Glucan Branching Enzyme from <i>Geobacillus thermoglucosidans</i> STB02. Journal of Agricultural and Food Chemistry, 2017, 65, 5674-5680.	2.4	22
36	Additional salt bridges improve the thermostability of 1,4-α-glucan branching enzyme. Food Chemistry, 2020, 316, 126348.	4.2	22

3

#	Article	IF	Citations
37	Assessment of starch-based wood adhesive quality by confocal Raman microscopic detection of reaction homogeneity. Carbohydrate Polymers, 2015, 131, 75-79.	5.1	21
38	Leu600 mutations decrease product inhibition of the \hat{l}^2 -cyclodextrin glycosyltransferase from Bacillus circulans STB01. International Journal of Biological Macromolecules, 2018, 115, 1194-1201.	3.6	21
39	Combinatorial effect of fermentation and drying on the relationship between the structure and expansion properties of tapioca starch and potato starch. International Journal of Biological Macromolecules, 2020, 145, 965-973.	3. 6	21
40	Two 1,4-α-glucan branching enzymes successively rearrange glycosidic bonds: A novel synergistic approach for reducing starch digestibility. Carbohydrate Polymers, 2021, 262, 117968.	5.1	21
41	Thermostabilization of a thermophilic 1,4-α-glucan branching enzyme through C-terminal truncation. International Journal of Biological Macromolecules, 2018, 107, 1510-1518.	3.6	20
42	Impact of celluloses and pectins restrictions on gluten development and water distribution in potato-wheat flour dough. International Journal of Biological Macromolecules, 2022, 206, 534-542.	3.6	20
43	Structure and emulsification properties of octenyl succinic anhydride starch using acidâ€hydrolyzed method. Starch/Staerke, 2017, 69, 1600039.	1.1	19
44	Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Critical Reviews in Biotechnology, 2020, 40, 380-396.	5.1	19
45	Expression and characterization of an extremely thermophilic 1,4-α-glucan branching enzyme from Rhodothermus obamensis STB05. Protein Expression and Purification, 2019, 164, 105478.	0.6	18
46	Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulase. International Journal of Biological Macromolecules, 2019, 131, 564-571.	3.6	18
47	Structure-Based Engineering of a Maltooligosaccharide-Forming Amylase To Enhance Product Specificity. Journal of Agricultural and Food Chemistry, 2020, 68, 838-844.	2.4	18
48	Alanine 310 is important for the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02. International Journal of Biological Macromolecules, 2017, 97, 156-163.	3.6	17
49	Effects of lowâ€ŧemperature blanching on tissue firmness and cell wall strengthening during sweet potato flour processing. International Journal of Food Science and Technology, 2014, 49, 1360-1366.	1.3	16
50	Potassium and sodium ions enhance the activity and thermostability of $1,4\cdot\hat{l}\pm$ -glucan branching enzyme from Geobacillus thermoglucosidasius in the presence of glycerol. International Journal of Biological Macromolecules, 2017, 102, 712-717.	3.6	16
51	Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. International Journal of Biological Macromolecules, 2019, 138, 394-402.	3.6	16
52	Flexible Loop in Carbohydrate-Binding Module 48 Allosterically Modulates Substrate Binding of the 1,4-α-Glucan Branching Enzyme. Journal of Agricultural and Food Chemistry, 2021, 69, 5755-5763.	2.4	16
53	Preparation and characterization of octenyl succinic anhydride modified waxy maize starch hydrolyzate/chitosan complexes with enhanced interfacial properties. Carbohydrate Polymers, 2021, 267, 118228.	5.1	16
54	Preparation and structural properties of starch phosphate modified by alkaline phosphatase. Carbohydrate Polymers, 2022, 276, 118803.	5.1	16

#	Article	IF	CITATIONS
55	Butyrylated starch protects mice from DSS-induced colitis: combined effects of butyrate release and prebiotic supply. Food and Function, 2021, 12, 11290-11302.	2.1	15
56	Effect of cassava starch structure on scalding of dough and baking expansion ability. Food Chemistry, 2021, 352, 129350.	4.2	15
57	Effects of different gelatinization degrees of starch in potato flour on the quality of steamed bread. International Journal of Biological Macromolecules, 2022, 209, 144-152.	3.6	15
58	Effect of NaCl addition on the freeze-thaw stability of tapioca starch gels. Starch/Staerke, 2015, 67, 604-611.	1.1	14
59	Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans. International Journal of Biological Macromolecules, 2016, 83, 111-116.	3.6	14
60	Characterization the structural property and degradation behavior of corn starch in KOH/thiourea aqueous solution. Carbohydrate Polymers, 2021, 270, 118363.	5.1	14
61	Structural studies of an acidic polysaccharide of <i>Mesona blumes</i> gum. Journal of the Science of Food and Agriculture, 2008, 88, 24-34.	1.7	13
62	Rheological properties of cereal starch gels and <i>Mesona Blumes</i> gum mixtures. Starch/Staerke, 2010, 62, 480-488.	1.1	13
63	Mutations enhance \hat{l}^2 -cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Carbohydrate Polymers, 2014, 108, 112-117.	5.1	13
64	Non-classical secretion of 1,4-alpha-glucan branching enzymes without signal peptides in Escherichia coli. International Journal of Biological Macromolecules, 2019, 132, 759-765.	3.6	13
65	Novel Short-Clustered Maltodextrin as a Dietary Starch Substitute Attenuates Metabolic Dysregulation and Restructures Gut Microbiota in <i>db</i> /i>/db Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 12400-12412.	2.4	13
66	Effects of sugar, salt and acid on tapioca starch and tapioca starchâ€xanthan gum combinations. Starch/Staerke, 2014, 66, 436-443.	1.1	12
67	Structure of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 provides insights into its product specificity. International Journal of Biological Macromolecules, 2020, 154, 1303-1313.	3.6	12
68	Carbohydrate-Binding Module and Linker Allow Cold Adaptation and Salt Tolerance of Maltopentaose-Forming Amylase From Marine Bacterium Saccharophagus degradans 2-40T. Frontiers in Microbiology, 2021, 12, 708480.	1.5	12
69	Mutations at calcium binding site III in cyclodextrin glycosyltransferase improve \hat{l}^2 -cyclodextrin specificity. International Journal of Biological Macromolecules, 2015, 76, 224-229.	3.6	11
70	Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-α-Glucan Branching Enzyme from <i>Geobacillus thermoglucosidans</i> STB02. Journal of Agricultural and Food Chemistry, 2020, 68, 13791-13797.	2.4	11
71	Emulsification properties of enzymatically treated octenylâ€succinic anhydride starch. Starch/Staerke, 2014, 66, 1089-1095.	1.1	10
72	Influence of guar gum on the in vitro digestibility of tapioca starch. Starch/Staerke, 2016, 68, 339-347.	1.1	10

#	Article	IF	CITATIONS
73	Enzyme assisted fermentation of potato pulp: An effective way to reduce water holding capacity and improve drying efficiency. Food Chemistry, 2018, 258, 118-123.	4.2	10
74	Importance of Trp139 in the product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Applied Microbiology and Biotechnology, 2019, 103, 9433-9442.	1.7	10
75	The desirable salt bridges in amylases: Distribution, configuration and location. Food Chemistry, 2021, 354, 129475.	4.2	10
76	Ultrasonic pretreatment improves the highâ€temperature liquefaction of corn starch at high concentrations. Starch/Staerke, 2017, 69, 1600002.	1.1	9
77	Variants at position 603 of the CGTase from Bacillus circulans STB01 for reducing product inhibition. International Journal of Biological Macromolecules, 2019, 136, 460-468.	3.6	9
78	Starch-Binding Domain Modulates the Specificity of Maltopentaose Production at Moderate Temperatures. Journal of Agricultural and Food Chemistry, 2022, 70, 9057-9065.	2.4	9
79	Effect of increased pressure on the coated layer profile of steamed rice. Food Chemistry, 2020, 310, 125971.	4.2	7
80	Combined effects of wheat gluten and carboxymethylcellulose on dough rheological behaviours and gluten network of potato–wheat flourâ€based bread. International Journal of Food Science and Technology, 2021, 56, 4149-4158.	1.3	7
81	Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Biotechnology Letters, 2020, 42, 295-303.	1.1	6
82	New insights into the alleviating role of starch derivatives on dough quality deterioration caused by freeze. Food Chemistry, 2021, 362, 130240.	4.2	6
83	The amino acid on the top of the active groove allosterically modulates product specificity of the 1,4-α-glucan branching enzyme. Food Chemistry, 2022, 384, 132458.	4.2	6
84	A review of controlled release from cyclodextrins: release methods, release systems and application. Critical Reviews in Food Science and Nutrition, 2023, 63, 4744-4756.	5.4	5
85	Complexation behavior of carboxymethyl short-chain amylose and quaternized chitosan. International Journal of Biological Macromolecules, 2022, 209, 1914-1921.	3.6	5
86	Maltose binding site 2 mutations affect product inhibition of Bacillus circulans STB01 cyclodextrin glycosyltransferase. International Journal of Biological Macromolecules, 2021, 175, 254-261.	3.6	4
87	Effects of acid-ethanol hydrolysis and debranch on acetylated starch and its potential used for curcumin carrier. Carbohydrate Polymers, 2022, 279, 119019.	5.1	4
88	Physical Changes of <i>Mesona Blumes</i> Gum/Starch Mixed Gel with Sugars. Cereal Chemistry, 2008, 85, 550-556.	1.1	3
89	Importance of C-Terminal Extension in Thermophilic 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02. Applied Biochemistry and Biotechnology, 2020, 190, 1010-1022.	1.4	3
90	Study on rapid drying and spoilage prevention of potato pulp using solid-state fermentation with Aspergillus aculeatus. Bioresource Technology, 2020, 296, 122323.	4.8	3

#	Article	IF	CITATIONS
91	KOH/thiourea aqueous solution: A potential solvent for studying the dissolution mechanism and chain conformation of corn starch. International Journal of Biological Macromolecules, 2022, 195, 86-92.	3.6	3
92	Fusion of maltooligosaccharide-forming amylases from two origins for the improvement of maltopentaose synthesis. Food Research International, 2021, 150, 110735.	2.9	2
93	Themes, Trends, and Knowledge Structure in 30 Years of Starch Research in Food Science and Technology: a Visualization Review. Starch/Staerke, 0, , 2100274.	1.1	2
94	Substrate Selectivity of a Novel Amylo- \hat{l} ±-1,6-glucosidase from Thermococcus gammatolerans STB12. Foods, 2022, 11, 1442.	1.9	1