Wim Thiery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4877207/publications.pdf Version: 2024-02-01

		94433	102487
88	4,951	37	66
papers	citations	h-index	g-index
153 all docs	153 docs citations	153 times ranked	4882 citing authors

WIM THIEDV

#	Article	IF	CITATIONS
1	A typology of compound weather and climate events. Nature Reviews Earth & Environment, 2020, 1, 333-347.	29.7	536
2	Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11, 226-233.	18.8	345
3	Widespread deoxygenation of temperate lakes. Nature, 2021, 594, 66-70.	27.8	267
4	Globally observed trends in mean and extreme river flow attributed to climate change. Science, 2021, 371, 1159-1162.	12.6	213
5	Presentâ€day irrigation mitigates heat extremes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1403-1422.	3.3	194
6	The Impact of the African Great Lakes on the Regional Climate. Journal of Climate, 2015, 28, 4061-4085.	3.2	156
7	Intergenerational inequities in exposure to climate extremes. Science, 2021, 374, 158-160.	12.6	148
8	Storm impacts on phytoplankton community dynamics in lakes. Global Change Biology, 2020, 26, 2756-2784.	9.5	144
9	Warming of hot extremes alleviated by expanding irrigation. Nature Communications, 2020, 11, 290.	12.8	118
10	Phenological shifts in lake stratification under climate change. Nature Communications, 2021, 12, 2318.	12.8	118
11	LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 66, 21390.	1.7	88
12	Hazardous thunderstorm intensification over Lake Victoria. Nature Communications, 2016, 7, 12786.	12.8	87
13	Climate change drives widespread shifts in lake thermal habitat. Nature Climate Change, 2021, 11, 521-529.	18.8	87
14	Understanding the performance of the FLake model over two African Great Lakes. Geoscientific Model Development, 2014, 7, 317-337.	3.6	82
15	Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty. Environmental Research Letters, 2018, 13, 064007.	5.2	79
16	A new approach for assessing synergies of solar and wind power: implications for West Africa. Environmental Research Letters, 2018, 13, 094009.	5.2	77
17	The Rwenzori Mountains, a landslide-prone region?. Landslides, 2016, 13, 519-536.	5.4	74
18	The Regional Climate Impact of a Realistic Future Deforestation Scenario in the Congo Basin. Journal of Climate, 2014, 27, 2714-2734.	3.2	70

#	Article	IF	CITATIONS
19	Attribution of global lake systems change to anthropogenic forcing. Nature Geoscience, 2021, 14, 849-854.	12.9	70
20	Future projections of temperature and mixing regime of European temperate lakes. Hydrology and Earth System Sciences, 2019, 23, 1533-1551.	4.9	69
21	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	6.3	69
22	Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 2015, 9, 285-304.	3.9	67
23	Drivers of future changes in East African precipitation. Environmental Research Letters, 2016, 11, 114011.	5.2	66
24	Can climateâ€ e ffective land management reduce regional warming?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2269-2288.	3.3	66
25	Smart renewable electricity portfolios in West Africa. Nature Sustainability, 2020, 3, 710-719.	23.7	66
26	Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study. Hydrology and Earth System Sciences, 2021, 25, 787-810.	4.9	65
27	Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2422-2444.	3.0	60
28	Modelling the water balance of Lake Victoria (East Africa) – PartÂ1: Observational analysis. Hydrology and Earth System Sciences, 2018, 22, 5509-5525.	4.9	60
29	Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 2020, 10, 20514.	3.3	56
30	COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review. Geoscientific Model Development, 2021, 14, 5125-5154.	3.6	55
31	Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 2020, 17, 5615-5638.	3.3	55
32	Linking solar and wind power in eastern Africa with operation of the Grand Ethiopian Renaissance Dam. Nature Energy, 2021, 6, 407-418.	39.5	49
33	Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains. Natural Hazards and Earth System Sciences, 2018, 18, 105-124.	3.6	42
34	Evaluating and improving the Community Land Model's sensitivity to land cover. Biogeosciences, 2018, 15, 4731-4757.	3.3	41
35	Landslide inventory for hazard assessment in a data-poor context: a regional-scale approach in a tropical African environment. Landslides, 2018, 15, 2195-2209.	5.4	41
36	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	3.6	41

#	Article	lF	CITATIONS
37	Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda. Natural Hazards, 2016, 84, 851-876.	3.4	40
38	Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	5.2	38
39	Evaluating TMPA Rainfall over the Sparsely Gauged East African Rift. Journal of Hydrometeorology, 2018, 19, 1507-1528.	1.9	37
40	A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development, 2022, 15, 4597-4623.	3.6	37
41	Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections. Hydrology and Earth System Sciences, 2018, 22, 5527-5549.	4.9	36
42	Amplified Drought and Flood Risk Under Future Socioeconomic and Climatic Change. Earth's Future, 2021, 9, e2021EF002295.	6.3	36
43	Early warnings of hazardous thunderstorms over Lake Victoria. Environmental Research Letters, 2017, 12, 074012.	5.2	35
44	Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica. Cryosphere, 2012, 6, 841-857.	3.9	32
45	Landslide susceptibility and mobilization rates in the Mount Elgon region, Uganda. Landslides, 2019, 16, 571-584.	5.4	32
46	A convection-permitting model for the Lake Victoria Basin: evaluation and insight into the mesoscale versus synoptic atmospheric dynamics. Climate Dynamics, 2020, 54, 1779-1799.	3.8	32
47	Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+. Climatic Change, 2020, 163, 1307-1327.	3.6	32
48	Estimating the effect of rainfall on the surface temperature of a tropical lake. Hydrology and Earth System Sciences, 2018, 22, 6357-6369.	4.9	31
49	Global Heat Uptake by Inland Waters. Geophysical Research Letters, 2020, 47, e2020GL087867.	4.0	31
50	Burning embers: towards more transparent and robust climate-change risk assessments. Nature Reviews Earth & Environment, 2020, 1, 516-529.	29.7	29
51	Multi-year wind dynamics around Lake Tanganyika. Climate Dynamics, 2016, 47, 3191-3202.	3.8	28
52	Towards more predictive and interdisciplinary climate change ecosystem experiments. Nature Climate Change, 2019, 9, 809-816.	18.8	28
53	Modelled biophysical impacts of conservation agriculture on local climates. Global Change Biology, 2018, 24, 4758-4774.	9.5	27
54	Global increase in methane production under future warming of lake bottom waters. Global Change Biology, 2022, 28, 5427-5440.	9.5	27

#	Article	IF	CITATIONS
55	The local climate impact of an African city during clearâ€sky conditions—Implications of the recent urbanization in Kampala (Uganda). International Journal of Climatology, 2020, 40, 4586-4608.	3.5	25
56	Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environmental Research Letters, 2020, 15, 044006.	5.2	25
57	Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming. Scientific Reports, 2017, 7, 43890.	3.3	21
58	Multimodel simulation of vertical gas transfer in a temperate lake. Hydrology and Earth System Sciences, 2020, 24, 697-715.	4.9	20
59	Climate change reduces winter overland travel across the Pan-Arctic even under low-end global warming scenarios. Environmental Research Letters, 2021, 16, 024049.	5.2	20
60	A quantitative evaluation of the issue of drought definition: a source of disagreement in future drought assessments. Environmental Research Letters, 2021, 16, 104001.	5.2	18
61	Longâ€ŧerm change of phytoplankton in Lake Kivu: The rise of the greens. Freshwater Biology, 2019, 64, 1940-1955.	2.4	17
62	Potential of global land water recycling to mitigate local temperature extremes. Earth System Dynamics, 2019, 10, 157-169.	7.1	17
63	User-friendly workflows for catchment modelling: Towards reproducible SWAT+ model studies. Environmental Modelling and Software, 2020, 134, 104812.	4.5	17
64	3D-modelling of Lake Kivu: Horizontal and vertical flow and temperature structure under spatially variable atmospheric forcing. Journal of Great Lakes Research, 2020, 46, 947-960.	1.9	16
65	One simulation, different conclusions—the baseline period makes the difference!. Environmental Research Letters, 2020, 15, 104014.	5.2	16
66	Can we use local climate zones for predicting malaria prevalence across sub-Saharan African cities?. Environmental Research Letters, 2020, 15, 124051.	5.2	16
67	Lack of vegetation exacerbates exposure to dangerous heat in dense settlements in a tropical African city. Environmental Research Letters, 2022, 17, 024004.	5.2	16
68	Need for harmonized long-term multi-lake monitoring of African Great Lakes. Journal of Great Lakes Research, 2023, 49, 101988.	1.9	16
69	A fully consistent and conservative vertically adaptive coordinate system for SLIMÂ3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika. Geoscientific Model Development, 2018. 11. 1161-1179.	3.6	15
70	Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power. Renewable and Sustainable Energy Reviews, 2020, 134, 110352.	16.4	14
71	Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production. Economics of Disasters and Climate Change, 2021, 5, 367-390.	2.2	12
72	Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling. Geoscientific Model Development, 2022, 15, 4163-4192.	3.6	11

#	Article	IF	CITATIONS
73	The extent and variability of stormâ€induced temperature changes in lakes measured with longâ€term and highâ€frequency data. Limnology and Oceanography, 2021, 66, 1979-1992.	3.1	10
74	Simulating the Impact of Global Reservoir Expansion on the Presentâ€Đay Climate. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034485.	3.3	9
75	A novel method for assessing climate change impacts in ecotron experiments. International Journal of Biometeorology, 2020, 64, 1709-1727.	3.0	8
76	Future intensification of precipitation and wind gust associated thunderstorms over Lake Victoria. Weather and Climate Extremes, 2021, 34, 100391.	4.1	8
77	Can local fieldwork help to represent intra-urban variability of canopy parameters relevant for tropical African climate studies?. Theoretical and Applied Climatology, 2021, 146, 457-474.	2.8	7
78	Global data set of long-term summertime vertical temperature profiles in 153 lakes. Scientific Data, 2021, 8, 200.	5.3	7
79	Agricultural management effects on mean and extreme temperature trends. Earth System Dynamics, 2022, 13, 419-438.	7.1	6
80	A spatiotemporal atlas of hydropower in Africa for energy modelling purposes. Open Research Europe, 0, 1, 29.	2.0	6
81	Phytoplankton pigment analysis as a tool for monitoring a tropical great lake, Lake Kivu (East Africa). Inland Waters, 2021, 11, 223-233.	2.2	4
82	Validity of estimating flood and drought characteristics under equilibrium climates from transient simulations. Environmental Research Letters, 2021, 16, 104028.	5.2	4
83	Evaluation of high-resolution precipitation products over the RwenzoriÂMountains (Uganda). Journal of Hydrometeorology, 2022, , .	1.9	4
84	REVUB-Light: A parsimonious model to assess power system balancing and flexibility for optimal intermittent renewable energy integration – A study of Suriname. Renewable Energy, 2021, 173, 57-75.	8.9	3
85	Pieces of a puzzle: solar-wind power synergies on seasonal and diurnal timescales tend to be excellent worldwide. Environmental Research Communications, 2022, 4, 055011.	2.3	3
86	A spatiotemporal atlas of hydropower in Africa for energy modelling purposes. Open Research Europe, 0, 1, 29.	2.0	1
87	A spatiotemporal atlas of hydropower in Africa for energy modelling purposes. Open Research Europe, 0, 1, 29.	2.0	1
88	Independent Quality Assessment of Essential Climate Variables: Lessons learnt from the Copernicus Climate Change Service. Bulletin of the American Meteorological Society, 2022, , .	3.3	1