Cunbin An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/487691/publications.pdf

Version: 2024-02-01

all docs

		236925	155660	
55	3,906	25	55	
papers	citations	h-index	g-index	
56	56	56	3417	

times ranked

docs citations

citing authors

#	Article	IF	CITATIONS
1	A Universal Nonhalogenated Polymer Donor for Highâ€Performance Organic Photovoltaic Cells. Advanced Materials, 2022, 34, e2105803.	21.0	53
2	A Highâ€Performance Nonfused Wideâ€Bandgap Acceptor for Versatile Photovoltaic Applications. Advanced Materials, 2022, 34, e2108090.	21.0	71
3	Benchmarking of density functionals for the description of optical properties of newly synthesized Ï€â€conjugated TADF blue emitters. Chemistry - A European Journal, 2022, , .	3 . 3	3
4	Benzo[1,2- <i>b</i> :4,5- <i>b</i> ê²]dithiophene-Based Conjugated Polymers for Highly Efficient Organic Photovoltaics. Accounts of Materials Research, 2022, 3, 540-551.	11.7	19
5	Optimizing polymer aggregation and blend morphology for boosting the photovoltaic performance of polymer solar cells via a random terpolymerization strategy. Journal of Energy Chemistry, 2021, 59, 30-37.	12.9	20
6	17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.	30.8	116
7	Effect of alkyl side chains of twisted conjugated polymer donors on photovoltaic performance. Polymer, 2021, 218, 123475.	3.8	6
8	A Sulfhydryl Azobenzene-Modified Polyaniline/Silver Electrode and Its Photoswitching Electrochemical Performance. ACS Omega, 2021, 6, 11519-11528.	3.5	5
9	Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells. Science China Chemistry, 2021, 64, 1200-1207.	8.2	20
10	A Thiadiazoleâ€Based Conjugated Polymer with Ultradeep HOMO Level and Strong Electroluminescence Enables 18.6% Efficiency in Organic Solar Cell. Advanced Energy Materials, 2021, 11, 2101705.	19.5	125
11	Sulfur-rich benzodithieno[3,2-b]thiophene-cored hole transporting materials for long-time stability of perovskite solar cells. Dyes and Pigments, 2021, 193, 109506.	3.7	6
12	Optimization of active layer morphology by small-molecule donor design enables over 15% efficiency in small-molecule organic solar cells. Journal of Materials Chemistry A, 2021, 9, 13653-13660.	10.3	21
13	Significant influence of doping effect on photovoltaic performance of efficient fullerene-free polymer solar cells. Journal of Energy Chemistry, 2020, 43, 40-46.	12.9	43
14	A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Science China Chemistry, 2020, 63, 21-27.	8.2	72
15	The effect of aggregation behavior on photovoltaic performances in benzodithiophene-thiazolothiazole-based wide band-gap conjugated polymers with side chain position changes. Polymer Chemistry, 2020, 11, 1629-1636.	3.9	30
16	Increased conjugated backbone twisting to improve carbonylated-functionalized polymer photovoltaic performance. Organic Chemistry Frontiers, 2020, 7, 261-266.	4.5	10
17	Study of photovoltaic performances for asymmetrical and symmetrical chlorinated thiophene-bridge-based conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 2301-2306.	5.5	15
18	Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells. Advanced Materials, 2020, 32, e1906557.	21.0	109

#	Article	IF	Citations
19	Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 2020, 7, 1239-1246.	9.5	443
20	Reduced Nonradiative Recombination Energy Loss Enabled Efficient Polymer Solar Cells via Tuning Alkyl Chain Positions on Pendent Benzene Units of Polymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24184-24191.	8.0	7
21	Organic photovoltaic cells for low light applications offering new scope and orientation. Organic Electronics, 2020, 85, 105798.	2.6	26
22	Efficient Exciton Dissociation Enabled by the End Group Modification in Non-Fullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 7691-7698.	3.1	18
23	15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution. Science China Materials, 2020, 63, 1142-1150.	6.3	140
24	Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chemical Communications, 2020, 56, 4750-4760.	4.1	94
25	Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.	21.0	1,407
26	Enhanced photovoltaic effect from naphtho[2,3- <i>c</i>]thiophene-4,9-dione-based polymers through alkyl side chain induced backbone distortion. Journal of Materials Chemistry A, 2020, 8, 14706-14712.	10.3	10
27	A Carbonylated Terthiophene–Based Twisted Polymer for Efficient Ternary Polymer Solar Cells. Macromolecular Rapid Communications, 2019, 40, e1900246.	3.9	7
28	Effect of linear side-chain length on the photovoltaic performance of benzodithiophene- <i>alt</i> -dicarboxylic ester terthiophene polymers. New Journal of Chemistry, 2019, 43, 12950-12956.	2.8	9
29	Enhanced intermolecular interactions to improve twisted polymer photovoltaic performance. Science China Chemistry, 2019, 62, 370-377.	8.2	29
30	Three-Dimensional Pyrene-Fused $\langle i \rangle N \langle i \rangle$ -Heteroacenes. Journal of the American Chemical Society, 2019, 141, 5130-5134.	13.7	44
31	Asymmetric Wideâ€Bandgap Polymers Simultaneously Improve the Openâ€Circuit Voltage and Shortâ€Circuit Current for Organic Photovoltaics. Macromolecular Rapid Communications, 2019, 40, e1800906.	3.9	21
32	A Printable Organic Cathode Interlayer Enables over 13% Efficiency for 1-cm2 Organic Solar Cells. Joule, 2019, 3, 227-239.	24.0	193
33	Cyclopentadithiophene–Benzothiadiazole Donor–Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors. Accounts of Chemical Research, 2018, 51, 1196-1205.	15.6	93
34	Effect of fluorination of naphthalene diimide–benzothiadiazole copolymers on ambipolar behavior in field-effect transistors. RSC Advances, 2018, 8, 16464-16469.	3.6	6
35	The Crucial Role of Chlorinated Thiophene Orientation in Conjugated Polymers for Photovoltaic Devices. Angewandte Chemie, 2018, 130, 13093-13097.	2.0	8
36	Layered Thiadiazoloquinoxalineâ€Containing Long Pyreneâ€Fused Nâ€Heteroacenes. Angewandte Chemie, 2018, 130, 12555-12559.	2.0	11

#	Article	IF	Citations
37	The Crucial Role of Chlorinated Thiophene Orientation in Conjugated Polymers for Photovoltaic Devices. Angewandte Chemie - International Edition, 2018, 57, 12911-12915.	13.8	87
38	Layered Thiadiazoloquinoxalineâ€Containing Long Pyreneâ€Fused Nâ€Heteroacenes. Angewandte Chemie - International Edition, 2018, 57, 12375-12379.	13.8	39
39	Molecular Ordering of Dithieno[2,3- <i>d</i> ;2′,3′- <i>d</i>]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]dithiophene for Field-Effect Transistors. ACS Omega, 2018, 3, 6513-6522.	S 3.5	3
40	Thiadiazoloquinoxaline-Fused Naphthalenediimides for n-Type Organic Field-Effect Transistors (OFETs). Organic Letters, 2017, 19, 6300-6303.	4.6	25
41	Synthesis of a quinoidal dithieno[2,3-d;2′,3′-d]benzo[2,1-b;3,4-b′]-dithiophene based open-shell singlet biradicaloid. Organic Chemistry Frontiers, 2017, 4, 18-21.	4.5	8
42	Impact of Interfacial Microstructure on Charge Carrier Transport in Solutionâ€Processed Conjugated Polymer Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 2245-2252.	21.0	58
43	Controlling the Surface Organization of Conjugated Donor–Acceptor Polymers by their Aggregation in Solution. Advanced Materials, 2016, 28, 9430-9438.	21.0	62
44	Dithieno[2,3-d;2′,3′-d]benzo[2,1-b;3,4-b ]dithiophene: a novel building-block for a planar copolymer. Polymer Chemistry, 2016, 7, 1545-1548.	3.9	13
45	Strengthening the acceptor properties of thiadiazoloquinoxalines via planarization. New Journal of Chemistry, 2015, 39, 6765-6770.	2.8	7
46	Investigation of the structure–property relationship of thiadiazoloquinoxaline-based copolymer semiconductors via molecular engineering. Journal of Materials Chemistry C, 2015, 3, 3876-3881.	5.5	11
47	Phenanthrene Condensed Thiadiazoloquinoxaline Donor–Acceptor Polymer for Phototransistor Applications. Chemistry of Materials, 2015, 27, 2218-2223.	6.7	67
48	Tuning the optoelectronic properties of dual-acceptor based low-bandgap ambipolar polymers by changing the thiophene-bridge length. Polymer Chemistry, 2015, 6, 6238-6245.	3.9	11
49	Condensed Derivatives of Thiadiazoloquinoxaline as Strong Acceptors. Crystal Growth and Design, 2015, 15, 1934-1938.	3.0	23
50	Highly Ordered Phenanthroline-Fused Azaacene. Crystal Growth and Design, 2015, 15, 5240-5245.	3.0	17
51	Benzodithiophene–Thiadiazoloquinoxaline as an Acceptor for Ambipolar Copolymers with Deep LUMO Level and Distinct Linkage Pattern. Macromolecules, 2014, 47, 979-986.	4.8	41
52	Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene based organic sensitizers for dye-sensitized sol cells. RSC Advances, 2014, 4, 54130-54133.	lar 3.6	16
53	Thiadizoloquinoxaline-Based Low-Bandgap Conjugated Polymers as Ambipolar Semiconductors for Organic Field Effect Transistors. Chemistry of Materials, 2014, 26, 5923-5929.	6.7	44
54	Alignment of Organic Semiconductor Microstripes by Twoâ€Phase Dipâ€Coating. Small, 2014, 10, 1926-1931.	10.0	37

#	Article	IF	CITATIONS
55	In situ Formation of NOx and Br Anion for Aerobic Oxidation of Benzylic Alcohols without Transition Metal. Synlett, 2010, 2010, 437-440.	1.8	27