Mara de Joannon

List of Publications by Citations

Source: https://exaly.com/author-pdf/4876686/mara-de-joannon-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
71	Mild Combustion. <i>Progress in Energy and Combustion Science</i> , 2004 , 30, 329-366	33.6	833
7º	MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel. <i>Combustion and Flame</i> , 2012 , 159, 1832-1839	5.3	112
69	Review on Ammonia as a Potential Fuel: From Synthesis to Economics. <i>Energy & Energy & Energy</i>	4.1	95
68	Analysis of process parameters for steady operations in methane mild combustion technology. <i>Proceedings of the Combustion Institute</i> , 2005 , 30, 2605-2612	5.9	94
67	CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions. <i>Combustion and Flame</i> , 2015 , 162, 533-543	5.3	76
66	Zero-dimensional analysis of diluted oxidation of methane in rich conditions. <i>Proceedings of the Combustion Institute</i> , 2000 , 28, 1639-1646	5.9	70
65	Hydrogen-enriched methane Mild Combustion in a well stirred reactor. <i>Experimental Thermal and Fluid Science</i> , 2007 , 31, 469-475	3	61
64	Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 3147-3154	5.9	58
63	Mild Combustion in Homogeneous Charge Diffusion Ignition (HCDI) regime. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 3409-3416	5.9	54
62	The Effect of Diluent on the Sustainability of MILD Combustion in a Cyclonic Burner. <i>Flow, Turbulence and Combustion</i> , 2016 , 96, 449-468	2.5	48
61	Pyrolitic and Oxidative Structures in Hot Oxidant Diluted Oxidant (HODO) MILD Combustion. <i>Combustion Science and Technology</i> , 2012 , 184, 1207-1218	1.5	48
60	Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions. <i>Applied Energy</i> , 2019 , 254, 113676	10.7	47
59	Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure. <i>Combustion and Flame</i> , 2013 , 160, 47-55	5.3	45
58	H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons. <i>Flow, Turbulence and Combustion</i> , 2016 , 96, 433-448	2.5	43
57	Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene flames. <i>Chemosphere</i> , 2001 , 42, 835-41	8.4	40
56	Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions. <i>Energy</i> , 2017 , 137, 1167-1174	7.9	39
55	Influence of preheating and thermal power on cyclonic burner characteristics under mild combustion. <i>Fuel</i> , 2018 , 233, 207-214	7.1	38

(2020-2000)

54	Mild Combustion: Process Features and Technological Constrains. <i>Combustion Science and Technology</i> , 2000 , 153, 33-50	1.5	36	
53	Modeling Negative Temperature Coefficient region in methane oxidation. <i>Fuel</i> , 2012 , 91, 238-245	7.1	34	
52	The relation between ultraviolet-excited fluorescence spectroscopy and aromatic species formed in rich laminar ethylene flames. <i>Combustion and Flame</i> , 2001 , 125, 1225-1229	5.3	32	
51	Fuel and thermal load flexibility of a MILD burner. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 45	54 7.4 55	5432	
50	Small size burner combustion stabilization by means of strong cyclonic recirculation. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 3361-3369	5.9	31	
49	Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure. <i>Combustion and Flame</i> , 2014 , 161, 3022-3030	5.3	31	
48	DYNAMIC BEHAVIOR OF METHANE OXIDATION IN PREMIXED FLOW REACTOR. <i>Combustion Science and Technology</i> , 2004 , 176, 769-783	1.5	28	
47	Dependence of autoignition delay on oxygen concentration in mild combustion of high molecular weight paraffin. <i>Proceedings of the Combustion Institute</i> , 2002 , 29, 1139-1146	5.9	27	
46	Numerical Investigation of Moderate or Intense Low-Oxygen Dilution Combustion in a Cyclonic Burner Using a Flamelet-Generated Manifold Approach. <i>Energy & Dilution Combustion in a Cyclonic Survey States</i> (1924) 10242-10255	4.1	24	
45	Oxidation and pyrolysis of ammonia mixtures in model reactors. <i>Fuel</i> , 2020 , 264, 116768	7.1	23	
44	Influence of water addition on MILD ammonia combustion performances and emissions. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5147-5154	5.9	21	
43	Development of a Novel Cyclonic Flow Combustion Chamber for Achieving MILD/Flameless Combustion. <i>Energy Procedia</i> , 2015 , 66, 141-144	2.3	18	
42	Heterogeneous nucleation activation in a condensational scrubber for particulate abatement. <i>Fuel Processing Technology</i> , 2013 , 107, 113-118	7.2	18	
41	An experimental and numerical study of MILD combustion in a Cyclonic burner. <i>Energy Procedia</i> , 2017 , 120, 649-656	2.3	17	
40	Propane oxidation in a Jet Stirred Flow Reactor. The effect of H 2 O as diluent species. <i>Experimental Thermal and Fluid Science</i> , 2018 , 95, 35-43	3	17	
39	VOC destruction by water diluted hydrogen mild combustion. <i>Chemosphere</i> , 2007 , 68, 330-7	8.4	16	
38	Oscillatory Behavior in Methane Combustion: Influence of the Operating Parameters. <i>Energy & Energy & </i>	4.1	15	
37	Ammonia oxidation features in a Jet Stirred Flow Reactor. The role of NH2 chemistry <i>Fuel</i> , 2020 , 276, 118054	7.1	15	

36	The role of dilution level and canonical configuration in the modeling of MILD combustion systems with internal recirculation. <i>Fuel</i> , 2020 , 264, 116840	7.1	15
35	Experimental study of the effect of CO2 on propane oxidation in a Jet Stirred Flow Reactor. <i>Fuel</i> , 2016 , 184, 876-888	7.1	15
34	Effects of mixture composition, dilution level and pressure on auto-ignition delay times of propane mixtures. <i>Chemical Engineering Journal</i> , 2015 , 277, 324-333	14.7	14
33	Laser Excited Emission and Chemiluminescence from Autoigniting Spray. <i>Combustion Science and Technology</i> , 2000 , 155, 129-147	1.5	13
32	Effects of Bath Gas and NOx Addition on n-Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. <i>Energy & Discourse States and Part Stirred States and Nox Addition on n-Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. Energy & Discourse States and Nox Addition on n-Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. <i>Energy & Discourse States and Nox Addition on n-Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. Energy & Discourse States and Nox Addition on n-Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. <i>Energy & Discourse States and Nox Addition on n-Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. Energy & Discourse States and Dis</i></i></i>	4.1	12
31	Optimization of Chemical Kinetics for Methane and Biomass Pyrolysis Products in Moderate or Intense Low-Oxygen Dilution Combustion. <i>Energy & Dilution Combustion Energy & Dilution Combustion Combustion Energy & Dilution Combustion Combusti</i>	4.1	12
30	Numerical investigation of the ignition and annihilation of CH4/N2/O2 mixtures under MILD operative conditions with detailed chemistry. <i>Combustion Theory and Modelling</i> , 2017 , 21, 120-136	1.5	11
29	Optimal post-combustion conditions for the purification of CO2-rich exhaust streams from non-condensable reactive species. <i>Chemical Engineering Journal</i> , 2012 , 211-212, 318-326	14.7	11
28	On H2D2 oxidation in several bath gases. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 8151-8167	' 6.7	10
27	A Comprehensive Kinetic Modeling of Ignition of SyngasAir Mixtures at Low Temperatures and High Pressures. <i>Combustion Science and Technology</i> , 2010 , 182, 692-701	1.5	9
26	Highly Preheated Lean Combustion 2008 , 55-94		9
25	Spectroscopic behavior of oxygenated combustion by-products. <i>Chemosphere</i> , 2003 , 51, 1071-7	8.4	9
24	Thermochemical oscillation of methane MILD combustion diluted with N2/CO2/H2O. <i>Combustion Science and Technology</i> , 2019 , 191, 68-80	1.5	9
23	Critical Issues of Chemical Kinetics in MILD Combustion. <i>Frontiers in Mechanical Engineering</i> , 2020 , 6,	2.6	8
22	Mutual inhibition effect of hydrogen and ammonia in oxidation processes and the role of ammonia as Etrong Lollider in third-molecular reactions. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 3211.	3-3212	27 ⁸
21	Diffusion Ignition Processes in MILD Combustion: A Mini-Review. <i>Frontiers in Mechanical Engineering</i> , 2020 , 6,	2.6	7
20	Identification of oxygenated compounds in combustion systems. Chemosphere, 2001, 42, 843-51	8.4	7
19	Thermo-chemical manifold reduction for tabulated chemistry modeling. Temperature and dilution constraints for smooth combustion reactors. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5393-54	 02̄2 ⁹	7

18	MILD Combustion 2010, 237		6
17	MILD Combustion and Biofuels: A Minireview. <i>Energy & Description of the Combustion and Biofuels: A Minireview and State (Combustion and Biofuels)</i>	4.1	6
16	REACTOR CHARACTERISTICS RELATED TO MODERATE OR INTENSE LOW-OXYGEN DILUTION FOR CLEAN/CLEANING COMBUSTION PLANTS. <i>Clean Air</i> , 2003 , 4, 1-20		5
15	Alcohols as Energy Carriers in MILD Combustion. <i>Energy & Dels</i> , 2021 , 35, 7253-7264	4.1	5
14	Removal of Very Small Submicrometric Particles by Water Nucleation: Effects of Chemical Physical Properties of Particles. <i>Energy & amp; Fuels</i> , 2018 , 32, 10285-10294	4.1	5
13	AIR DILUTION EFFECTS ON TETRADECANE SPRAY AUTOIGNITION IN TRANSCRITICAL AND SUPERCRITICAL REGIMES. <i>Atomization and Sprays</i> , 1999 , 9, 153-172	1.2	4
12	Introduction of the Special Issue on SMARTCATs COST Action. <i>Energy & Comp. Fuels</i> , 2018 , 32, 10051-100.	54.1	4
11	PYROLYTIC AND OXIDATIVE STRUCTURES IN HDDI MILD COMBUSTION. <i>International Journal of Energy for A Clean Environment</i> , 2010 , 11, 21-34	1.5	3
10	DILUTION EFFECTS IN NATURAL GAS MILD COMBUSTION. Clean Air, 2006, 7, 127-139		3
9	Ammonia oxidation regimes and transitional behaviors in a Jet Stirred Flow Reactor. <i>Combustion and Flame</i> , 2021 , 228, 388-400	5.3	3
8	New insight into NH3-H2 mutual inhibiting effects and dynamic regimes at low-intermediate temperatures. <i>Combustion and Flame</i> , 2022 , 111957	5.3	2
7	Mini-Review: Heat Transfer Mechanisms in MILD Combustion Systems. <i>Frontiers in Mechanical Engineering</i> , 2021 , 7,	2.6	2
6	Highly Preheated Lean Combustion 2016 , 63-109		2
5	Ammonia/Methane combustion: Stability and NOx emissions. Combustion and Flame, 2022, 241, 112071	5.3	2
4	Distributed combustion in a cyclonic burner 2017 ,		1
3	Analysis of pyrolysis process in diesel-like combustion by means of laser-induced fluorescence. <i>Proceedings of the Combustion Institute</i> , 1996 , 26, 2525-2531		1
2	Easy tuning of nanotexture and N doping of carbonaceous particles produced by spark discharge. <i>Carbon Trends</i> , 2021 , 5, 100134	0	1
1	Reactive Structures of Ammonia MILD Combustion in Diffusion Ignition Processes. <i>Frontiers in Energy Research</i> , 2021 , 9,	3.8	1