Lanqin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4876620/publications.pdf Version: 2024-02-01

Ι ΑΝΟΙΝ ΖΗΛΟ

 Application of Comprehensive Artificial intelligence R real-world evidence study. The Lancet Digital Health, Implementation of artificial intelligence in medicine: 9 Artificial Intelligence in Medicine, 2020, 102, 101780 Screening Candidates for Refractive Surgery With Co Ophthalmology, 2020, 138, 519. 	2021, 3, e486-e495. Status analysis and development suggestions. Drneal Tomographic–Based Deep Learning. JAMA discerning macular status using ultra-widefield 5. m to screen vision-threatening conditions in high British Journal of Ophthalmology, 2022, 106,	5.9 3.8 1.4 2.0 2.1	65 53 51 48
 Artificial Intelligence in Medicine, 2020, 102, 101780 Screening Candidates for Refractive Surgery With Co Ophthalmology, 2020, 138, 519. 	orneal Tomographic–Based Deep Learning. JAMA discerning macular status using ultra-widefield 5. m to screen vision-threatening conditions in high British Journal of Ophthalmology, 2022, 106,	1.4 2.0	51
³ Ophthalmology, 2020, 138, 519.	discerning macular status using ultra-widefield 5. m to screen vision-threatening conditions in high British Journal of Ophthalmology, 2022, 106,	2.0	
	5. m to screen vision-threatening conditions in high British Journal of Ophthalmology, 2022, 106,		48
4 fundus images. Communications Biology, 2020, 3, 15	British Journal of Ophthalmology, 2022, 106,	2.1	
Development and validation of a deep learning system 5 myopia using optical coherence tomography images. 633-639.			36
6 A deep learning system for identifying lattice degene fundus images. Annals of Translational Medicine, 201	ration and retinal breaks using ultra-widefield 19, 7, 618-618.	0.7	36
7 Deep learning for automated glaucomatous optic ner images. British Journal of Ophthalmology, 2021, 105		2.1	29
8 A practical model for the identification of congenital EBioMedicine, 2020, 51, 102621.	cataracts using machine learning.	2.7	28
9 Automatic identification of myopia based on ocular a Translational Medicine, 2020, 8, 705-705.	ppearance images using deep learning. Annals of	0.7	23
Artificial intelligence manages congenital cataract wi computing. Npj Digital Medicine, 2020, 3, 112.	th individualized prediction and telehealth	5.7	22
Development and Evaluation of a Deep Learning Syst Ultra-Widefield Fundus Images. Translational Vision S		1.1	22
12 Application of artificial intelligence in anterior segme standardization. Annals of Translational Medicine, 20	nt ophthalmic diseases: diversity and)20, 8, 714-714.	0.7	21
Automated detection of retinal exudates and drusen learning. Eye, 2022, 36, 1681-1686.	in ultra-widefield fundus images based on deep	1.1	19
Predicting Post-Therapeutic Visual Acuity and OCT Im 14 Chorioretinopathy by Artificial Intelligence. Frontiers 649221.	nages in Patients With Central Serous in Bioengineering and Biotechnology, 2021, 9,	2.0	18
Deep learning from "passive feeding―to "sel 2020, 3, 143.	ective eating―of real-world data. Npj Digital Medicine,	5.7	17
Attitudes towards medical artificial intelligence talen Translational Medicine, 2020, 8, 708-708.	t cultivation: an online survey study. Annals of	0.7	14
The impact of an interactive, multifaceted education anxiety, knowledge and satisfaction: A randomized, c Counseling, 2020, 103, 321-327.	approach for congenital cataract on parental controlled trial. Patient Education and	1.0	13
 Incidence of and Risk Factors for Suspected Glaucom Cataract Surgery: A Longitudinal Study in China. Jour 		0.8	12

Lanqin Zhao

#	Article	IF	CITATIONS
19	Optical Coherence Tomography Angiography Reveals Distinct Retinal Structural and Microvascular Abnormalities in Cerebrovascular Disease. Frontiers in Neuroscience, 2020, 14, 588515.	1.4	12
20	Spatial Technology Assessment of Green Space Exposure andÂMyopia. Ophthalmology, 2022, 129, 113-117.	2.5	11
21	Comparison of macular structural and vascular changes in neuromyelitis optica spectrum disorder and primary open angle glaucoma: a cross-sectional study. British Journal of Ophthalmology, 2021, 105, 354-360.	2.1	7
22	Associations Between Regional Environment and Cornea-Related Morphology of the Eye in Young Adults: A Large-Scale Multicenter Cross-Sectional Study. , 2021, 62, 35.		6
23	The value and implementation of routine ophthalmic examination in the era of HAART. EClinicalMedicine, 2021, 31, 100646.	3.2	4
24	Developmental characteristics of the cytokine profile in aqueous humor and its relationship with the inflammatory response in children. Annals of Translational Medicine, 2020, 8, 1542-1542.	0.7	3
25	Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning. Frontiers in Physiology, 2021, 12, 649316.	1.3	3
26	The associations of population mobility in HIV disease severity and mortality rate in China. Annals of Translational Medicine, 2021, 9, 315-315.	0.7	2
27	Handwashing quality assessment via deep learning: a modelling study for monitoring compliance and standards in hospitals and communities. Intelligent Medicine, 2022, 2, 152-160.	1.6	2
28	Optimizing the study design of clinical trials to identify the efficacy of artificial intelligence tools in clinical practices–Authors' reply. EClinicalMedicine, 2019, 16, 12-13.	3.2	0