
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4876607/publications.pdf Version: 2024-02-01

DEDDO LAVELA

#	Article	lF	CITATIONS
1	Exploring hybrid Mg2+/H+ reactions of C@MgMnSiO4 with boosted voltage in magnesium-ion batteries. Electrochimica Acta, 2022, 404, 139738.	5.2	10
2	Marine shrimp/tin waste as a negative electrode for rechargeable sodium-ion batteries. Journal of Cleaner Production, 2022, 359, 131994.	9.3	9
3	A dual vanadium substitution strategy for improving NASICON-type cathode materials for Na-ion batteries. Sustainable Energy and Fuels, 2021, 5, 4095-4103.	4.9	2
4	Effect of the Mn/V ratio to optimize the kinetic properties of Na3+xMnxV1-xCr(PO4)3 positive electrode for sodium-ion batteries. Electrochimica Acta, 2021, 375, 137982.	5.2	15
5	On the benefits of Cr substitution on Na4MnV(PO4)3 to improve the high voltage performance as cathode for sodium-ion batteries. Journal of Power Sources, 2021, 495, 229811.	7.8	32
6	Reversible Multi-Electron Storage Enabled by Na5V(PO4)2F2 for Rechargeable Magnesium Batteries. Energy Storage Materials, 2021, 38, 462-472.	18.0	21
7	Iron substitution in Na4VMn(PO4)3 as a strategy for improving the electrochemical performance of sodium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 895, 115533.	3.8	9
8	Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries. Electrochimica Acta, 2020, 332, 135502.	5.2	29
9	Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 856, 113694.	3.8	39
10	Influence of Cosurfactant on the Synthesis of Surfaceâ€Modified Na 2/3 Ni 1/3 Mn 2/3 O 2 as a Cathode for Sodiumâ€lon Batteries. ChemElectroChem, 2020, 7, 3528-3534.	3.4	5
11	Iron Oxide–Iron Sulfide Hybrid Nanosheets as High-Performance Conversion-Type Anodes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10765-10775.	5.1	20
12	Inorganic solids for dual magnesium and sodium battery electrodes. Journal of Solid State Electrochemistry, 2020, 24, 2565-2573.	2.5	3
13	Sustainable and Environmentally Friendly Na and Mg Aqueous Hybrid Batteries Using Na and K Birnessites. Molecules, 2020, 25, 924.	3.8	5
14	Increasing Energy Density with Capacity Preservation by Aluminum Substitution in Sodium Vanadium Phosphate. ACS Applied Materials & Interfaces, 2020, 12, 21651-21660.	8.0	26
15	Carbon nanomaterials for advanced lithium and sodium-ion batteries. , 2019, , 335-355.		0
16	Exploring the high-voltage Mg ²⁺ /Na ⁺ co-intercalation reaction of Na ₃ VCr(PO ₄) ₃ in Mg-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18081-18091.	10.3	29
17	Superior electrochemical performance of TiO2 sodium-ion battery anodes in diglyme-based electrolyte solution. Journal of Power Sources, 2019, 432, 82-91.	7.8	37
18	Morphological adaptability of graphitic carbon nanofibers to enhance sodium insertion in a diglyme-based electrolyte. Dalton Transactions, 2019, 48, 5417-5424.	3.3	8

PEDRO LAVELA

#	Article	IF	CITATIONS
19	On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 789, 1035-1045.	5.5	13
20	On the Beneficial Effect of MgCl2 as Electrolyte Additive to Improve the Electrochemical Performance of Li4Ti5O12 as Cathode in Mg Batteries. Nanomaterials, 2019, 9, 484.	4.1	8
21	On the Effect of Silicon Substitution in Na ₃ V ₂ (PO ₄) ₃ on the Electrochemical Behavior as Cathode for Sodiumâ€lon Batteries. ChemElectroChem, 2018, 5, 367-374.	3.4	33
22	NASICON-type Na3V2(PO4)3 as a new positive electrode material forÂrechargeable aluminium battery. Electrochimica Acta, 2018, 260, 798-804.	5.2	51
23	Exploring an Aluminum Ion Battery Based on Molybdite as Working Electrode and Ionic Liquid as Electrolyte. Journal of the Electrochemical Society, 2018, 165, A2994-A2999.	2.9	27
24	On the influence of particle morphology to provide high performing chemically desodiated C@NaV2(PO4)3 as cathode for rechargeable magnesium batteries. Journal of Electroanalytical Chemistry, 2018, 827, 128-136.	3.8	16
25	Applicability of Molybdite as an Electrode Material in Calcium Batteries: A Structural Study of Layer-type Ca _{<i>x</i>} MoO ₃ . Chemistry of Materials, 2018, 30, 5853-5861.	6.7	63
26	On the Mechanism of Magnesium Storage in Micro- and Nano-Particulate Tin Battery Electrodes. Nanomaterials, 2018, 8, 501.	4.1	22
27	Sodium storage behavior of Na0.66Ni0.33Ë—xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. Journal of Power Sources, 2018, 400, 317-324.	7.8	21
28	Treasure Na-ion anode from trash coke by adept electrolyte selection. Journal of Power Sources, 2017, 347, 127-135.	7.8	40
29	Induced Rate Performance Enhancement in Offâ€Stoichiometric Na _{3+3<i>x</i>} V _{2â°'<i>x</i>} (PO ₄) ₃ with Potential Applicability as the Cathode for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2017, 23, 7345-7352.	3.3	26
30	On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2017, 784, 47-54.	3.8	49
31	Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: a case of sodium-magnesium hybrid battery. Electrochimica Acta, 2017, 246, 908-913.	5.2	47
32	Improved Surface Stability of C+M _{<i>x</i>} O _{<i>y</i>} @Na ₃ V ₂ (PO ₄) _{3Prepared by Ultrasonic Method as Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 1471-1478.}	suby 8.0	37
33	Insight into the Electrochemical Sodium Insertion of Vanadium Superstoichiometric NASICON Phosphate. Inorganic Chemistry, 2017, 56, 11845-11853.	4.0	15
34	Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2017, 724, 465-473.	5.5	37
35	On the Reliability of Sodium Co-Intercalation in Expanded Graphite Prepared by Different Methods as Anodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3804-A3813.	2.9	44
36	Nanostructured TiO2 Materials for New-Generation Li-Ion Batteries. , 2017, , 171-221.		0

#	Article	IF	CITATIONS
37	Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives. Gels, 2016, 2, 4.	4.5	19
38	Highâ€Performance Na3V2(PO4)3/C Cathode for Sodiumâ€ion Batteries Prepared by a Ballâ€Millingâ€Assisted Method. European Journal of Inorganic Chemistry, 2016, 2016, 3212-3218.	2.0	42
39	Enhanced high-rate performance of manganese substituted Na 3 V 2 (PO 4) 3 /C as cathode for sodium-ion batteries. Journal of Power Sources, 2016, 313, 73-80.	7.8	126
40	Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material. Electrochemistry Communications, 2016, 67, 59-64.	4.7	107
41	Mn-Containing N-Doped Monolithic Carbon Aerogels with Enhanced Macroporosity as Electrodes for Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2016, 4, 2487-2494.	6.7	32
42	On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization. Journal of Solid State Chemistry, 2016, 242, 21-28.	2.9	14
43	Na ₃ V ₂ (PO ₄) ₃ /C Nanorods with Improved Electrode–Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23151-23159.	8.0	92
44	Nanobelts of Beta-Sodium Vanadate as Electrode for Magnesium and Dual Magnesium-Sodium Batteries. Journal of the Electrochemical Society, 2016, 163, A2781-A2790.	2.9	24
45	Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. RSC Advances, 2016, 6, 62157-62164.	3.6	91
46	On the use of diatomite as antishrinkage additive in the preparation of monolithic carbon aerogels. Carbon, 2016, 98, 280-284.	10.3	6
47	High Performance Full Sodiumâ€ion Cell Based on a Nanostructured Transition Metal Oxide as Negative Electrode. Chemistry - A European Journal, 2015, 21, 14879-14885.	3.3	28
48	Effect of Iron Substitution in the Electrochemical Performance of Na ₃ V ₂ (PO ₄) ₃ as Cathode for Na-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3077-A3083.	2.9	141
49	N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon, 2015, 83, 262-274.	10.3	118
50	Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water. Journal of Electroanalytical Chemistry, 2015, 741, 42-50.	3.8	31
51	Self-assembled Li4Ti5O12/TiO2/Li3PO4 for integrated Li–ion microbatteries. Electrochemistry Communications, 2015, 56, 61-64.	4.7	12
52	On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. Electrochimica Acta, 2015, 170, 154-163.	5.2	30
53	Benefits of Chromium Substitution in Na ₃ V ₂ (PO ₄) ₃ as a Potential Candidate for Sodiumâ€lon Batteries. ChemElectroChem, 2015, 2, 995-1002.	3.4	137
54	Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn ₂ O ₄ and lambda-MnO ₂ for both aqueous and non-aqueous magnesium-ion batteries. CrystEngComm, 2015, 17, 8728-8735.	2.6	71

#	Article	IF	CITATIONS
55	Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries. Electrochimica Acta, 2015, 180, 824-830.	5.2	115
56	Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries. Materials Research, 2014, 17, 1065-1070.	1.3	12
57	Effect of the resorcinol/catalyst ratio in the capacitive performance of carbon xerogels with potential use in sodium chloride removal from saline water. Journal of Solid State Electrochemistry, 2014, 18, 2847-2856.	2.5	14
58	A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water. Electrochimica Acta, 2014, 135, 208-216.	5.2	81
59	High reversible sodium insertion into iron substituted Na1+xTi2â^'xFex(PO4)3. Journal of Power Sources, 2014, 252, 208-213.	7.8	54
60	Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping. Solid State Ionics, 2014, 262, 573-577.	2.7	46
61	Improved electro-assisted removal of phosphates and nitrates using mesoporous carbon aerogels with controlled porosity. Journal of Applied Electrochemistry, 2014, 44, 963-976.	2.9	26
62	Influence of composition modification on Ca0.5â^'xMgxTi2(PO4)3 (0.0â‰ ¤ â‰ 0 .5) nanoparticles as electrodes for lithium batteries. Materials Research Bulletin, 2014, 49, 566-571.	5.2	2
63	Nanoscale Tin Heterostructures for Improved Energy Storage in Lithium Batteries. ACS Symposium Series, 2013, , 1-22.	0.5	0
64	Tunable Ti ⁴⁺ /Ti ³⁺ Redox Potential in the Presence of Iron and Calcium in NASICON-Type Related Phosphates as Electrodes for Lithium Batteries. Chemistry of Materials, 2013, 25, 4025-4035.	6.7	18
65	Improved coulombic efficiency in nanocomposite thin film based on electrodeposited-oxidized FeNi-electrodes for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 557, 82-90.	5.5	8
66	Electrosorption of environmental concerning anions on a highly porous carbon aerogel. Journal of Electroanalytical Chemistry, 2013, 708, 80-86.	3.8	23
67	Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries. Electrochemistry Communications, 2013, 27, 152-155.	4.7	40
68	119Sn Mössbauer spectroscopy analysis of Sn–Co–C composites prepared from a Fuel Oil Pyrolysis precursor as anodes for Li-ion batteries. Materials Chemistry and Physics, 2013, 138, 747-754.	4.0	5
69	Towards an all-solid-state battery: Preparation of conversion anodes by electrodeposition–oxidation processes. Journal of Power Sources, 2013, 244, 403-409.	7.8	7
70	Improving the electrochemical performance of titanium phosphate-based electrodes in sodium batteries by lithium substitution. Journal of Materials Chemistry A, 2013, 1, 13963.	10.3	16
71	Improved Energy Storage Solution Based on Hybrid Oxide Materials. ACS Sustainable Chemistry and Engineering, 2013, 1, 46-56.	6.7	61
72	Unfolding the role of iron in Li-ion conversion electrode materials by 57Fe Mössbauer spectroscopy. , 2013, , 489-495.		0

#	Article	IF	CITATIONS
73	Novel fabrication technologies of 1D TiO _{2 nanotubes, vertical tin and iron-based nanowires for Li-ion microbatteries. International Journal of Nanotechnology, 2012, 9, 260.}	0.2	9
74	In Situ X-ray Diffraction Study of Electrochemical Insertion in Mg _{0.5} Ti ₂ (PO ₄) ₃ : An Electrode Material for Lithium or Sodium Batteries. Journal of the Electrochemical Society, 2012, 159, A1716-A1721.	2.9	18
75	The influence of iron substitution on the electrochemical properties of Li1+xTi2â^'xFex(PO4)3/C composites as electrodes for lithium batteries. Journal of Materials Chemistry, 2012, 22, 21602.	6.7	29
76	Unfolding the role of iron in Li-ion conversion electrode materials by 57Fe Mössbauer spectroscopy. Hyperfine Interactions, 2012, 207, 53-59.	0.5	11
77	A facile carbothermal preparation of Sn–Co–C composite electrodes for Li-ion batteries using low-cost carbons. Journal of Solid State Electrochemistry, 2012, 16, 953-962.	2.5	22
78	Chromium substitution in ion exchanged Li3Fe2(PO4)3 and the effects on the electrochemical behavior as cathodes for lithium batteries. Electrochimica Acta, 2012, 62, 124-131.	5.2	13
79	Electrochemical performance of the lithium insertion in Mn0.5â^'xCoxTi2(PO4)3/C composites (x=0,) Tj ETQq1 1	0.784314	rgBT /Overlo
80	Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent. Journal of Power Sources, 2012, 197, 314-318.	7.8	64
81	Electrochemical response of carbon aerogel electrodes in saline water. Journal of Electroanalytical Chemistry, 2012, 671, 92-98.	3.8	57
82	Tin-Based composite Materials Fabricated by Anodic Oxidation for the Negative Electrode of Li-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1094.	2.9	31
83	A 57Fe Mössbauer spectroscopy study of cobalt ferrite conversion electrodes for Li-ion batteries. Journal of Power Sources, 2011, 196, 6978-6981.	7.8	17
84	Recent advances in nanocrystalline intermetallic tin compounds for the negative electrode of lithium ion batteries. , 2011, , .		0
85	On the role of faradaic and capacitive contributions in the electrochemical performance of CoFe2O4 as conversion anode for Li-ion cells. Solid State Ionics, 2010, 181, 616-622.	2.7	46
86	Sn–Co–C composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 139-148.	2.5	20
87	On the use of the reverse micelles synthesis of nanomaterials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1749-1753.	2.5	8
88	NiMn2â^'Fe O4 prepared by a reverse micelles method as conversion anode materials for Li-ion batteries. Materials Chemistry and Physics, 2010, 124, 102-108.	4.0	26
89	On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89, 986-991.	6.4	84
90	Nanoarchitectured TiO ₂ /SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries?. Chemistry of Materials, 2010, 22, 1926-1932.	6.7	107

#	Article	IF	CITATIONS
91	A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries. Journal of Materials Chemistry, 2010, 20, 4041.	6.7	88
92	The Origin of Capacity Fading in NiFe ₂ O ₄ Conversion Electrodes for Lithium Ion Batteries Unfolded by ⁵⁷ Fe Mössbauer Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 12828-12832.	3.1	81
93	Effect of oxidation on the performance of low-temperature petroleum cokes as anodes in lithium ion batteries. Journal of Applied Electrochemistry, 2009, 39, 899-906.	2.9	2
94	TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochimica Acta, 2009, 54, 4262-4268.	5.2	137
95	Nanocomposite Electrode for Li-Ion Microbatteries Based on SnO on Nanotubular Titania Matrix. Electrochemical and Solid-State Letters, 2009, 12, A186.	2.2	37
96	Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. Chemistry of Materials, 2009, 21, 63-67.	6.7	320
97	⁵⁷ Fe Mössbauer Spectroscopy Study of the Electrochemical Reaction with Lithium of MFe ₂ O ₄ (M = Co and Cu) Electrodes. Journal of Physical Chemistry C, 2009, 113, 20081-20087.	3.1	42
98	Elucidation of Capacity Fading on CoFe[sub 2]O[sub 4] Conversion Electrodes for Lithium Batteries Based on [sup 57]Fe Molˆssbauer Spectroscopy. Journal of the Electrochemical Society, 2009, 156, A589.	2.9	24
99	A 57Fe Mössbauer spectroscopy study of iron nanoparticles obtained in situ in conversion ferrite electrodes. Hyperfine Interactions, 2008, 183, 1-5.	0.5	2
100	119Sn Mössbauer spectroscopy: a powerful tool to unfold the reaction mechanism in advanced electrodes for lithium-ion batteries. Hyperfine Interactions, 2008, 187, 13-17.	0.5	10
101	Electrochemical evaluation of CuFe2O4 samples obtained by sol–gel methods used as anodes in lithium batteries. Journal of Solid State Electrochemistry, 2008, 12, 729-737.	2.5	85
102	Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries. Solid State Ionics, 2008, 179, 2198-2208.	2.7	55
103	Cobalt Oxide Nanoparticles Prepared from Reverse Micelles as High-Capacity Electrode Materials for Li-Ion Cells. Electrochemical and Solid-State Letters, 2008, 11, A198.	2.2	20
104	Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4:  X-ray Absorption Spectroscopic Study. Journal of Physical Chemistry C, 2007, 111, 4636-4642.	3.1	103
105	High-Performance Transition Metal Mixed Oxides in Conversion Electrodes:  A Combined Spectroscopic and Electrochemical Study. Journal of Physical Chemistry C, 2007, 111, 14238-14246.	3.1	58
106	Lithium Insertion into Modified Conducting Domains of Graphitized Carbon Nanotubes. Journal of the Electrochemical Society, 2007, 154, A964.	2.9	14
107	⁵⁷ Fe Mössbauer Spectroscopy and Electron Microscopy Study of Metal Extraction from CuFe ₂ O ₄ Electrodes in Lithium Cells. ChemPhysChem, 2007, 8, 1999-2007.	2.1	47
108	Tin–carbon composites as anodic material in Li-ion batteries obtained by copyrolysis of petroleum vacuum residue and SnO2. Carbon, 2007, 45, 1396-1409.	10.3	29

#	Article	IF	CITATIONS
109	Sol–gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochimica Acta, 2007, 52, 7986-7995.	5.2	146
110	Comparative analysis of the changes in local Ni/Mn environment in lithium–nickel–manganese oxides with layered and spinel structure during electrochemical extraction and reinsertion of lithium. Journal of Power Sources, 2007, 174, 519-523.	7.8	15
111	CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. Journal of Power Sources, 2007, 172, 379-387.	7.8	306
112	EPR, NMR, and Electrochemical Studies of Surface-Modified Carbon Microbeads. Chemistry of Materials, 2006, 18, 2293-2301.	6.7	71
113	Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries. Electrochimica Acta, 2006, 52, 1281-1289.	5.2	7
114	Iron–carbon composites as electrode materials in lithium batteries. Carbon, 2006, 44, 1762-1772.	10.3	20
115	Electrochemical and 119Sn M¶ssbauer studies of the reaction of Co2SnO4 with lithium. Electrochemistry Communications, 2006, 8, 731-736.	4.7	34
116	EPR studies of Li deintercalation from LiCoMnO4 spinel-type electrode active material. Journal of Power Sources, 2006, 159, 1389-1394.	7.8	31
117	Influence of the oxidative stabilisation treatment time on the electrochemical performance of anthracene oils cokes as electrode materials for lithium batteries. Journal of Power Sources, 2006, 161, 1324-1334.	7.8	8
118	X-ray Absorption Spectroscopic Study of LiCoO2 as the Negative Electrode of Lithium-Ion Batteries. ChemPhysChem, 2006, 7, 1086-1091.	2.1	25
119	Rotor blade grinding and re-annealing of LiCoO2: SEM, XPS, EIS and electrochemical study. Journal of Electroanalytical Chemistry, 2005, 584, 147-156.	3.8	28
120	Composite electrode materials for lithium-ion batteries obtained by metal oxide addition to petroleum vacuum residua. Carbon, 2005, 43, 923-936.	10.3	12
121	Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries. Electrochimica Acta, 2005, 50, 1225-1232.	5.2	22
122	Effect of oxidative stabilization on the electrochemical performance of carbon mesophases as electrode materials for lithium batteries. Journal of Solid State Electrochemistry, 2005, 9, 627-633.	2.5	5
123	Optimization of the Electrochemical Behavior of Vapor Grown Carbon Nanofibers for Lithium-Ion Batteries by Impregnation, and Thermal and Hydrothermal Treatments. Journal of the Electrochemical Society, 2005, 152, A1797.	2.9	24
124	Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A222.	2.2	313
125	Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4. Chemistry of Materials, 2005, 17, 5202-5208.	6.7	85
126	Synergistic Effects of Double Substitution in LiNi[sub 0.5â^'y]Fe[sub y]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A13.	2.9	53

#	Article	IF	CITATIONS
127	Modification of Petroleum Coke for Lithium-Ion Batteries by Heat-Treatment with Iron Oxide. Journal of the Electrochemical Society, 2004, 151, A2113.	2.9	19
128	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2161.	10.3	21
129	X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. Journal of Electroanalytical Chemistry, 2004, 566, 187-192.	3.8	121
130	57Fe Mössbauer spectroscopy and surface modification with zinc and magnesium of LiCo0.8Fe0.2MnO4 5V electrodes. Journal of Power Sources, 2004, 135, 281-285.	7.8	6
131	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2153.	10.3	1
132	Changes in the Local Structure of LiMgyNi0.5-yMn1.5O4Electrode Materials during Lithium Extraction. Chemistry of Materials, 2004, 16, 1573-1579.	6.7	107
133	New LiNi[sub y]Co[sub 1â^'2y]Mn[sub 1+y]O[sub 4] Spinel Oxide Solid Solutions as 5 V Electrode Material for Li-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A53.	2.9	48
134	Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials ChemInform, 2003, 34, no.	0.0	0
135	Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon, 2003, 41, 3003-3013.	10.3	57
136	Lithium insertion mechanism in Sb-based electrode materials from 121Sb Mössbauer spectrometry. Journal of Power Sources, 2003, 119-121, 585-590.	7.8	48
137	Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4. Electrochemistry Communications, 2003, 5, 16-21.	4.7	109
138	Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4Spinel Oxides for 5-V Cathode Materials. Chemistry of Materials, 2003, 15, 2376-2382.	6.7	121
139	Electrochemical,6Li MAS NMR, and X-ray and Neutron Diffraction Study of LiCoxFeyMn2-(x+y)O4Spinel Oxides for High-Voltage Cathode Materials. Chemistry of Materials, 2003, 15, 1210-1216.	6.7	32
140	Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries. Pure and Applied Chemistry, 2002, 74, 1885-1894.	1.9	36
141	X-ray Diffraction,7Li MAS NMR Spectroscopy, and119Sn Mössbauer Spectroscopy Study of SnSb-Based Electrode Materials. Chemistry of Materials, 2002, 14, 2962-2968.	6.7	49
142	New NixMg6â^'xMnO8 Mixed Oxides as Active Materials for the Negative Electrode of Lithium-Ion Cells. Journal of Solid State Chemistry, 2002, 166, 330-335.	2.9	21
143	Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1â^'xNi0.5Mn1.5O4 spinel. Electrochimica Acta, 2002, 47, 1829-1835.	5.2	134
144	EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon, 2002, 40, 2301-2306.	10.3	52

#	Article	IF	CITATIONS
145	NiCo2O4Spinel:Â First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries. Chemistry of Materials, 2002, 14, 2847-2848.	6.7	458
146	In Situ Preparation of Composite Electrodes: Antimony Alloys and Compounds. , 2002, , 193-200.		1
147	Carbon-Based Negative Electrodes of Lithium-Ion Batteries Obtained from Residua of the Petroleum Industry. , 2002, , 101-108.		0
148	On the Use of In-Situ Generated Tin-Based Composite Materials in Lithium-Ion Cells. , 2002, , 201-208.		0
149	Cobalt(III) Effect on27Al NMR Chemical Shifts in LiAlxCo1-xO2. Journal of Physical Chemistry B, 2001, 105, 8081-8087.	2.6	40
150	Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2001, 6, 55-62.	2.5	31
151	Key factors controlling the electrochemical performance of the cation-deficient mixed spinel oxide Mn2.2Co0.27O4 as cathode in 3 V rechargeable lithium batteries. Journal of Power Sources, 2001, 94, 122-128.	7.8	0
152	Carbon black: a promising electrode material for sodium-ion batteries. Electrochemistry Communications, 2001, 3, 639-642.	4.7	355
153	Electrochemical reactions of polycrystalline CrSb2 in lithium batteries. Journal of Electroanalytical Chemistry, 2001, 501, 205-209.	3.8	64
154	Co/Mn distribution and electrochemical intercalation of Li into Li[Mn2â^'yCoy]O4 spinels, 0 <yâ‰⊉. solid<br="">State Ionics, 2001, 140, 19-33.</yâ‰⊉.>	2.7	22
155	Chemical delithiation, thermal transformations and electrochemical behaviour of iron- substituted lithium nickelate Materials Research Society Symposia Proceedings, 2000, 658, 971.	0.1	0
156	Effects of Partial Acid Delithiation on the Electrochemical Lithium Insertion Properties of Nickel-Stabilized LiMn2O4 Spinel Oxides. Journal of Solid State Chemistry, 2000, 150, 196-203.	2.9	10
157	Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon, 2000, 38, 1031-1041.	10.3	136
158	Electrochemical and 119Sn Mössbauer study of sulfospinels as anode materials for lithium-ion batteries. Electrochimica Acta, 2000, 46, 127-135.	5.2	9
159	X-ray and neutron diffraction, 57Fe Mössbauer spectroscopy and X-ray absorption spectroscopy studies of iron-substituted lithium cobaltate. Solid State Communications, 2000, 115, 1-6.	1.9	9
160	Aluminium coordination in LiNi1â^'yAlyO2 solid solutions. Solid State Ionics, 2000, 128, 1-10.	2.7	42
161	Lithium insertion mechanism inSnS2. Physical Review B, 2000, 61, 3110-3116.	3.2	60
162	EPR Studies on the Microstructure of Lini1-yCoyO2 Electrode Materials for Lithium-Ion Batteries. , 2000, , 491-495.		0

#	Article	IF	CITATIONS
163	Electrochemical Sodium Insertion into MnCo Oxide. Electrochemical and Solid-State Letters, 1999, 2, 545.	2.2	12
164	X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFeyCo1â^'yO2 compounds. Journal of Power Sources, 1999, 81-82, 547-553.	7.8	48
165	Nickel-stabilized composite manganese oxides as lithium insertion electrodes. Journal of Power Sources, 1999, 84, 75-79.	7.8	7
166	Electrochemical proton insertion in Mn2.2Co0.27O4 from aqueous borate solution. Electrochimica Acta, 1999, 45, 931-934.	5.2	3
167	Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes. Journal of Solid State Electrochemistry, 1999, 3, 121-134.	2.5	74
168	Electrochemical reaction of lithium with the CoSb3 skutterudite. Journal of Materials Chemistry, 1999, 9, 2517-2521.	6.7	128
169	Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3. Journal of Alloys and Compounds, 1999, 282, 93-100.	5.5	10
170	Structural Characterization and Electrochemical Reactions with Lithium of Cu2CoTixSn3-xS8Solid Solutions. Chemistry of Materials, 1999, 11, 2687-2693.	6.7	15
171	13C, 1H, 6Li Magic-Angle Spinning Nuclear Magnetic Resonance, Electron Paramagnetic Resonance, and Fourier Transform Infrared Study of Intercalation Electrodes Based in Ultrasoft Carbons Obtained below 3100 K. Chemistry of Materials, 1999, 11, 52-60.	6.7	25
172	Lithium insertion electrodes based on niobium telluride thin films. Electrochimica Acta, 1998, 43, 495-502.	5.2	1
173	SPES, 6Li MAS NMR, and Ni3+ EPR evidence for the formation of Co2+-containing spinel phases in LiCoO2 cycled electrode materials. Journal of Electroanalytical Chemistry, 1998, 454, 173-181.	3.8	16
174	X-ray Diffraction, EPR, and 6Li and 27Al MAS NMR Study of LiAlO2â^'LiCoO2 Solid Solutions. Inorganic Chemistry, 1998, 37, 264-269.	4.0	62
175	Changes in Structure and Cathode Performance with Composition and Preparation Temperature of Lithium Cobalt Nickel Oxide. Journal of the Electrochemical Society, 1998, 145, 730-736.	2.9	53
176	121Sb Mössbauer and X-ray Photoelectron Spectroscopy Studies of the Electronic Structure of Some Antimony Misfit Layer Compounds. Chemistry of Materials, 1997, 9, 1393-1398.	6.7	20
177	Lithiumâ^'Nickel Citrate Precursors for the Preparation of LiNiO2 Insertion Electrodes. Chemistry of Materials, 1997, 9, 2145-2155.	6.7	51
178	Structure and Dynamics of Lithium-Intercalated SnS2.6,7Li and119Sn Solid State NMR. Journal of Physical Chemistry B, 1997, 101, 6715-6723.	2.6	22
179	Novel layered chalcogenides as electrode materials for lithium-ion batteries. Journal of Power Sources, 1997, 68, 704-707.	7.8	18
180	VSe2â^'ySy electrodes in lithium and lithium-ion cells. Journal of Applied Electrochemistry, 1997, 27, 1207-1211.	2.9	20

#	Article	IF	CITATIONS
181	EPR studies of Lilâ^'x(NiyColâ^'y)1+xO2 solid solutions. Solid State Communications, 1997, 102, 457-462.	1.9	34
182	Structure and Electrochemical Properties of Boron-Doped LiCoO2. Journal of Solid State Chemistry, 1997, 134, 265-273.	2.9	140
183	Lithium intercalation and copper extraction in spinel sulfides of general formula Cu2MSn3S8(M = Mn,) Tj ETQq1	1 0.78431	4 rgBT /Ove
184	Intercalation of n-alkylamines into misfit layer sulfides. Journal of Materials Chemistry, 1996, 6, 861-866.	6.7	5
185	Sodium Intercalation into (PbS)1.18(TiS2)2Misfit Layer Compound. Journal of Solid State Chemistry, 1996, 124, 238-243.	2.9	7
186	Microstructure and intercalation properties of petrol cokes obtained at 1400°C. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 39, 216-223.	3.5	13
187	New tin-containing spinel sulfide electrodes for ambient temperature rocking chair cells. Journal of Power Sources, 1996, 62, 101-105.	7.8	27
188	Kinetic and thermodynamic aspects of lithium intercalation into lead tantalum sulfide and tin tantalum sulfide misfit layer compounds. Solid State Ionics, 1995, 76, 57-65.	2.7	0
189	119Sn Moessbauer Spectroscopy of Some Misfit Layer Sulfides. Chemistry of Materials, 1995, 7, 1193-1197.	6.7	8
190	Thermodynamic and kinetic properties of lithium insertion into titanium misfit layer sulfides. Journal of Materials Chemistry, 1994, 4, 1413.	6.7	3
191	Chemical and electrochemical intercalation of lithium into SnTiS3 and BiTi2S5 misfit layer compounds. Solid State Ionics, 1993, 63-65, 450-456.	2.7	7
192	Hydrated lithium intercalation compounds of misfit layer sulfides. Chemistry of Materials, 1992, 4, 2-4.	6.7	12
193	Electrochemical lithium intercalation into misfit layer sulfides. Chemistry of Materials, 1992, 4, 1021-1026.	6.7	21
194	Chemical and electrochemical lithium insertion into ternary transition metal sulfides MMo2S4 (M: V,) Tj ETQq0 0	0 <u>rg</u> BT /Ov	verlock 10 Tr
195	Structural aspects of lithium intercalated PbVS3, PbTiS3, PbTi2S5 and SnNbS3 misfit layer compounds. Materials Research Bulletin, 1991, 26, 1211-1218.	5.2	24