
Shingo Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/487644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiology, 2022, 188, 425-441.	4.8	44
2	Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. Plant Journal, 2022, 110, 358-376.	5.7	10
3	Arabidopsis homeobox-leucine zipper transcription factor BRASSINOSTEROID-RELATED HOMEOBOX 3 regulates leaf greenness by suppressing BR signaling. Plant Biotechnology, 2022, 39, 209-214.	1.0	1
4	Golgi-localized membrane protein AtTMN1/EMP12 functions in the deposition of rhamnogalacturonan II and I for cell growth in Arabidopsis. Journal of Experimental Botany, 2021, 72, 3611-3629.	4.8	6
5	Fiber Cell-Specific Expression of the VP16-Fused Ethylene Response Factor 41 Protein Increases Biomass Yield and Alters Lignin Composition. Frontiers in Plant Science, 2021, 12, 654655.	3.6	8
6	Improved chemical pulping and saccharification of a natural mulberry mutant deficient in cinnamyl alcohol dehydrogenase. Holzforschung, 2021, .	1.9	3
7	FIBexDB: a new online transcriptome platform to analyze development of plant cellulosic fibers. New Phytologist, 2021, 231, 512-515.	7.3	6
8	Prior secondary cell wall formation is required for gelatinous layer deposition and posture control in graviâ€stimulated aspen. Plant Journal, 2021, 108, 725-736.	5.7	4
9	Mutation of the imprinted gene <i>OsEMF2a</i> induces autonomous endosperm development and delayed cellularization in rice. Plant Cell, 2021, 33, 85-103.	6.6	23
10	In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. Plant and Cell Physiology, 2021, 62, 1813-1827.	3.1	7
11	Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. Biotechnology for Biofuels, 2020, 13, 97.	6.2	19
12	An Arabidopsis <scp>NAC</scp> domain transcription factor, <scp>ATAF2</scp> , promotes ageâ€dependent and darkâ€induced leaf senescence. Physiologia Plantarum, 2020, 170, 299-308.	5.2	29
13	A Century-Old Mystery Unveiled: Sekizaisou is a Natural Lignin Mutant. Plant Physiology, 2020, 182, 1821-1828.	4.8	24
14	Efficient transient gene expression system using buckwheat hypocotyl protoplasts for large-scale experiments. Breeding Science, 2020, 70, 128-134.	1.9	8
15	Simultaneous manipulation of lignin structure and secondary cell wall formation in transgenic poplar. Journal of Wood Science, 2020, 66, .	1.9	3
16	Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiology, 2019, 39, 514-525.	3.1	52
17	Essential roles of autophagy in metabolic regulation in endosperm development during rice seed maturation. Scientific Reports, 2019, 9, 18544.	3.3	36
18	Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 2019, 56, 179-186.	6.6	132

Shingo Sakamoto

#	Article	IF	CITATIONS
19	Tensile Testing Assay for the Measurement of Tissue Stiffness in Arabidopsis Inflorescence Stem. Bio-protocol, 2019, 9, e3327.	0.4	0
20	Vacuolar H ⁺ -Pyrophosphatase and Cytosolic Soluble Pyrophosphatases Cooperatively Regulate Pyrophosphate Levels in <i>Arabidopsis thaliana</i> . Plant Cell, 2018, 30, 1040-1061.	6.6	44
21	Improvement of cell wall digestibility in tall fescue by Oryza sativa SECONDARY WALL NAC DOMAIN PROTEIN2 chimeric repressor. Molecular Breeding, 2018, 38, 1.	2.1	10
22	Change in lignin structure, but not in lignin content, in transgenic poplar overexpressing the rice master regulator of secondary cell wall biosynthesis. Physiologia Plantarum, 2018, 163, 170-182.	5.2	19
23	Complete substitution of a secondary cell wall with a primary cell wall in Arabidopsis. Nature Plants, 2018, 4, 777-783.	9.3	63
24	An NAC domain transcription factor ATAF2 acts as transcriptional activator or repressor dependent on promoter context. Plant Biotechnology, 2018, 35, 285-289.	1.0	12
25	High-Throughput Analysis of Arabidopsis Stem Vibrations to Identify Mutants With Altered Mechanical Properties. Frontiers in Plant Science, 2018, 9, 780.	3.6	15
26	Dissecting promoter of <i>InMYB1</i> gene showing petal-specific expression. Plant Biotechnology, 2018, 35, 243-248.	1.0	5
27	The Arabidopsis NST3/SND1 promoter is active in secondary woody tissue in poplar. Journal of Wood Science, 2017, 63, 396-400.	1.9	5
28	The Apostasia genome and the evolution of orchids. Nature, 2017, 549, 379-383.	27.8	305
29	The chimeric repressor for the GATA4 transcription factor improves tolerance to nitrogen deficiency in <i>Arabidopsis</i> . Plant Biotechnology, 2017, 34, 151-158.	1.0	9
30	WUSCHEL-RELATED HOMEOBOX 2 is a transcriptional repressor involved in lateral organ formation and separation in <i>Arabidopsis</i> . Plant Biotechnology, 2016, 33, 245-253.	1.0	6
31	Wood reinforcement of poplar by rice NAC transcription factor. Scientific Reports, 2016, 6, 19925.	3.3	64
32	The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Scientific Reports, 2016, 6, 23609.	3.3	121
33	Development of a new high-throughput method to determine the composition of ten monosaccharides including 4- <i>O</i> -methyl glucuronic acid from plant cell walls using ultra-performance liquid chromatography. Plant Biotechnology, 2015, 32, 55-63.	1.0	18
34	Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant. Plant and Cell Physiology, 2015, 56, 299-310.	3.1	70
35	VP16 fusion induces the multipleâ€knockout phenotype of redundant transcriptional repressors partly by Med25â€independent mechanisms in <i>Arabidopsis</i> . FEBS Letters, 2014, 588, 3665-3672.	2.8	24
36	Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Frontiers in Plant Science, 2013, 4, 383.	3.6	101

#	Article	IF	CITATIONS
37	Analysis of Ascorbic Acid Biosynthesis Using a Simple Transient Gene Expression System in Tomato Fruit Protoplasts. Bioscience, Biotechnology and Biochemistry, 2013, 77, 673-675.	1.3	2
38	Molecular Cloning and Characterization of <small>L</small> -Galactose-1-phosphate Phosphatase from Tobacco (<i>Nicotiana tabacum</i>). Bioscience, Biotechnology and Biochemistry, 2012, 76, 1155-1162.	1.3	5