Stephan Enthaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4875929/publications.pdf

Version: 2024-02-01

50170 49773 8,243 133 46 87 citations h-index g-index papers 188 188 188 6376 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Depolymerization of Poly(1,2â€propylene carbonate) via Ring Closing Depolymerization and Methanolysis. ChemistrySelect, 2022, 7, .	0.7	3
2	Zincâ€Catalyzed Depolymerization of the Endâ€ofâ€Life Poly(ethylene 2,5â€furandicarboxylate). ChemistrySelect, 2021, 6, 7972-7975.	0.7	7
3	Zincâ€Catalyzed Chemical Recycling of Poly(Ïμâ€caprolactone) Applying Transesterification Reactions. ChemistrySelect, 2021, 6, 8063-8067.	0.7	12
4	Rutheniumâ€catalyzed Chemical Recycling of Poly(ϵâ€caprolactone) via Hydrogenative Depolymerization and Dehydrogenative Polymerization. ChemistrySelect, 2021, 6, 11244-11248.	0.7	2
5	Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate) via Alkaliâ€Metalâ€Halideâ€Catalyzed Methanolysis. Asian Journal of Organic Chemistry, 2020, 9, 359-363.	1.3	23
6	Depolymerization of End-of-Life Poly(bisphenol A carbonate) via 4-Dimethylaminopyridine-Catalyzed Methanolysis. Waste and Biomass Valorization, 2020, 11, 4621-4629.	1.8	24
7	Selective Degradation of Endâ€ofâ€Life Poly(lactide) via Alkaliâ€Metalâ€Halide Catalysis. Advanced Sustainable Systems, 2020, 4, 1900081.	2.7	34
8	Application of Bismuth Catalysts for the Methanolysis of Endâ€ofâ€Life Poly(lactide). ChemistrySelect, 2020, 5, 12313-12316.	0.7	15
9	Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate). ChemistrySelect, 2020, 5, 10010-10014.	0.7	24
10	Hydrogenative Depolymerization of Endâ€ofâ€Life Polycarbonates by an Iron Pincer Complex. ChemistryOpen, 2020, 9, 818-821.	0.9	9
11	Chemical Recycling of Endâ€ofâ€Life Poly(lactide) via Zincâ€Catalyzed Depolymerization and Polymerization. ChemistryOpen, 2020, 9, 1224-1228.	0.9	21
12	Chemical Recycling of Endâ€ofâ€Life Poly(lactide) via Zincâ€Catalyzed Depolymerization and Polymerization. ChemistryOpen, 2020, 9, 1223-1223.	0.9	1
13	Depolymerization of Endâ€ofâ€Life Poly(lactide) to Lactide via Zincâ€Catalysis. ChemistrySelect, 2020, 5, 14759-14763.	0.7	29
14	Tin(<scp>ii</scp>) 2-ethylhexanoate catalysed methanolysis of end-of-life poly(lactide). Polymer Chemistry, 2020, 11, 2625-2629.	1.9	33
15	Hydrogenative Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate) with ⟨i⟩in⟨/i⟩â€⟨i⟩situ⟨/i⟩ Generated Ruthenium Catalysts. ChemistrySelect, 2020, 5, 4231-4234.	0.7	12
16	Rutheniumâ€Catalyzed Hydrogenative Degradation of Endâ€ofâ€Life Poly(lactide) to Produce 1,2â€Propanediol as Platform Chemical. ChemistryOpen, 2020, 9, 401-404.	0.9	22
17	Depolymerization of Endâ€ofâ€Life Poly(lactide) via 4â€Dimethylaminopyridineâ€Catalyzed Methanolysis. ChemistrySelect, 2019, 4, 6845-6848.	0.7	46
18	Recycling of Endâ€ofâ€Life Poly(bisphenol A carbonate) via Alkali Metal Halideâ€Catalyzed Phenolysis. ChemistryOpen, 2019, 8, 822-827.	0.9	21

#	Article	IF	Citations
19	Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate) via Transesterification with Acetic Anhydride as Depolymerization Reagent. ChemistrySelect, 2019, 4, 2639-2643.	0.7	14
20	Rutheniumâ€Catalyzed Hydrogenative Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate). ChemistrySelect, 2019, 4, 12268-12271.	0.7	29
21	Hydrogenative Depolymerization of Endâ€ofâ€Life Polyâ€(Bisphenol A Carbonate) Catalyzed by a Rutheniumâ€MACHOâ€Complex. ChemistryOpen, 2019, 8, 1410-1412.	0.9	19
22	Chemical Recycling of Endâ€ofâ€Life Polyamide 6 via Ring Closing Depolymerization. ChemistrySelect, 2019, 4, 12638-12642.	0.7	42
23	Polyformamidineâ€Derived Nonâ€Noble Metal Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2018, 28, 1707551.	7.8	49
24	Illustrating Plastic Production and End-of-Life Plastic Treatment with Interlocking Building Blocks. Journal of Chemical Education, 2017, 94, 1746-1751.	1.1	6
25	2â€(1 <i>S</i>)â€Camphanoyloxyâ€2â€2â€phosphanylbiphenyl Ligands – Synthesis, Structure, and Preliminary in Transitionâ€Metal Catalysis. European Journal of Inorganic Chemistry, 2017, 2017, 2762-2773.	Tests 1.0	4
26	Depolymerization of end-of-life poly(dimethylsilazane) with boron trifluoride diethyl etherate to produce difluorodimethylsilane as useful commodity. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1189-1193.	0.8	1
27	Spent coffee ground as source for hydrocarbon fuels. Journal of Energy Chemistry, 2016, 25, 146-152.	7.1	30
28	Synthesis, isolation and characterization of dinuclear oxidodiiron(III) complexes modified by monodentate pyridines. Inorganic Chemistry Communication, 2016, 66, 73-78.	1.8	0
29	Conversion of Poly(methylhydrosiloxane) Waste to Useful Commodities. Catalysis Letters, 2016, 146, 345-352.	1.4	13
30	Depolymerization protocol for linear, branched, and crosslinked endâ€ofâ€life silicones with boron trifluoride diethyl etherate as the depolymerization reagent. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
31	Ironâ€catalyzed depolymerizations of silicones with hexanoic anhydride provide a potential recycling method for endâ€ofâ€ife polymers. European Journal of Lipid Science and Technology, 2015, 117, 778-785.	1.0	12
32	Iron-catalyzed depolymerizations of end-of-life silicones with fatty alcohols. Resource-efficient Technologies, 2015, 1, 73-79.	0.1	9
33	Nitrous Oxide-dependent Iron-catalyzed Coupling Reactions of Grignard Reagents. Chimia, 2015, 69, 327.	0.3	2
34	Synthesis and characterization of iron(II) and iron(III) complexes with a tridentate O,N,O′-ligand. Inorganic Chemistry Communication, 2015, 52, 56-59.	1.8	2
35	Exploring the Reactivity of Nickel Pincer Complexes in the Decomposition of Formic Acid to CO ₂ /H ₂ and the Hydrogenation of NaHCO ₃ to HCOONa. ChemCatChem, 2015, 7, 65-69.	1.8	105
36	Synthesis and structural characterization of a trispyrrole iron(II) complex K(dme)4[tpaMesFe] and application in nitrous oxide dependent coupling reactions. Inorganic Chemistry Communication, 2015, 54, 1-4.	1.8	6

3

#	Article	IF	CITATIONS
37	Recycling Concept for End-of-Life Silicones: Boron Trifluoride Diethyl Etherate as Depolymerization Reagent to Produce Difluorodimethylsilane as Useful Commodity. ACS Sustainable Chemistry and Engineering, 2015, 3, 163-169.	3.2	18
38	Synthesis of Mixed Silylene–Carbene Chelate Ligands from Nâ€Heterocyclic Silylcarbenes Mediated by Nickel. Angewandte Chemie - International Edition, 2015, 54, 2214-2218.	7.2	78
39	Nickel complexes with a O,N,O′-ligand and a phosphane co-ligand – Monometallic versus bimetallic complexes. Inorganica Chimica Acta, 2015, 434, 37-40.	1.2	3
40	Introducing Students to Feedstock Recycling of End-of-Life Silicones via a Low-Temperature, Iron-Catalyzed Depolymerization Process. Journal of Chemical Education, 2015, 92, 703-707.	1.1	9
41	Synthesis, characterization and application of nickel(II) complexes modified with N,N′,N″-pincer ligands. Inorganica Chimica Acta, 2015, 425, 118-123.	1,2	16
42	Synthesis, characterization and application of iron N-substituted imidazole complexes with the motif ClFeL4OFeCl3. Inorganic Chemistry Communication, 2015, 51, 4-8.	1.8	4
43	Ironâ€catalyzed depolymerization of polysiloxanes to produce dichlorodimethylsilane, diacetoxydimethylsilane, or dimethoxydimethylsilane. Journal of Applied Polymer Science, 2015, 132, .	1.3	18
44	Zinc-Catalyzed Depolymerization of Polyethers to Produce Valuable Building Blocks. Catalysis Letters, 2014, 144, 850-859.	1.4	15
45	Zincâ€Catalyzed Depolymerization of Endâ€ofâ€Life Polysiloxanes. Angewandte Chemie - International Edition, 2014, 53, 2716-2721.	7.2	40
46	Lowâ€Temperature Depolymerization of Polysiloxanes with Iron Catalysis. ChemSusChem, 2014, 7, 2030-2036.	3.6	22
47	Exploring the coordination chemistry of 2-picolinic acid to zinc and application of the complexes in catalytic oxidation chemistry. Inorganic Chemistry Communication, 2014, 46, 320-323.	1.8	14
48	Exploring the reactivity of dimethylzinc with fluorine substituted 1-phenyl-4,5-dihydro-1H-pyrazol-5-ols. Journal of Fluorine Chemistry, 2014, 157, 12-18.	0.9	4
49	Exploring the coordination chemistry of O,N,O′-ligands modified by 2-thienyl-substituents to nickel. Inorganic Chemistry Communication, 2014, 44, 114-118.	1.8	6
50	Synthesis of Ni(II) complexes with unsymmetric [O,N,O′]-pincer ligands and their use as precatalysts in carbon–carbon bond formations to access diarylmethanes. Inorganica Chimica Acta, 2014, 421, 136-144.	1,2	8
51	Zinc(II)â€triflate as catalyst precursor for ringâ€closing depolymerization of endâ€ofâ€life polytetrahydrofuran to produce tetrahydrofuran. Journal of Applied Polymer Science, 2014, 131, .	1.3	21
52	Exploring the reactivity of nickel complexes inÂhydrodecyanation reactions. Journal of Organometallic Chemistry, 2013, 745-746, 262-274.	0.8	16
53	Bis- <i>N</i> -Arene Iron(0) Complexes: Synthesis, Structure, Reactivity, and Catalytic Activity. Journal of the American Chemical Society, 2013, 135, 18108-18120.	6.6	98
54	From elusive thio- and selenosilanoic acids to copper(i) complexes with intermolecular Siî€E → Cu–O–Si coordination modes (E = S, Se). Chemical Communications, 2013, 49, 5595.	2.2	15

#	Article	IF	CITATIONS
55	A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks. Polymer Chemistry, 2013, 4, 1848.	1.9	70
56	Rise of the Zinc Age in Homogeneous Catalysis?. ACS Catalysis, 2013, 3, 150-158.	5.5	178
57	Straightforward Ironâ€Catalyzed Synthesis of Vinylboronates by the Hydroboration of Alkynes. Chemistry - an Asian Journal, 2013, 8, 50-54.	1.7	88
58	Exploring the coordination chemistry of 1-benzoyl-4,5-dihydro-3,5-bis(trifluoromethyl)-1H-pyrazol-5-ol to copper. Inorganic Chemistry Communication, 2013, 38, 131-134.	1.8	4
59	Nickel-catalyzed hydrodehalogenation of aryl halides. Journal of Organometallic Chemistry, 2013, 729, 53-59.	0.8	45
60	Dual functionality of formamidine polymers, as ligands and as bases, in ruthenium-catalysed hydrogen evolution from formic acid. Polymer Chemistry, 2013, 4, 2741.	1.9	5
61	Nickel-catalyzed C(sp2)–C(sp2) Cross Coupling Reactions of Sulfur-Functionalities and Grignard Reagents. Catalysis Letters, 2013, 143, 424-431.	1.4	41
62	Nickelâ€catalyzed Hydrodecyanation of Carbon–Cyano Bonds. Asian Journal of Organic Chemistry, 2013, 2, 150-156.	1.3	27
63	Electron-Rich N-Heterocyclic Silylene (NHSi)–Iron Complexes: Synthesis, Structures, and Catalytic Ability of an Isolable Hydridosilylene–Iron Complex. Journal of the American Chemical Society, 2013, 135, 6703-6713.	6.6	131
64	Application of fatty acid chlorides in the iron atalyzed depolymerization of polyethers. European Journal of Lipid Science and Technology, 2013, 115, 239-245.	1.0	13
65	Iron atalyzed Ring losing Depolymerization of Poly(tetrahydrofuran). ChemSusChem, 2013, 6, 1334-1336.	3.6	36
66	Application of a Bis(silylene) Nickel Complex as Precatalyst in C–C Bond Formation Reactions. Chemistry Letters, 2013, 42, 286-288.	0.7	49
67	Reductive Cleavage of Amides to Alcohols and Amines Catalyzed by Wellâ€Defined Bimetallic Molybdenum Complexes. Chemistry - A European Journal, 2012, 18, 15267-15271.	1.7	31
68	Deoxygenation of Sulfoxides to Sulfides in the Presence of Zinc Catalysts and Boranes as Reducing Reagents. Catalysis Letters, 2012, 142, 1003-1010.	1.4	25
69	Zinc-Catalyzed Deoxygenation of Sulfoxides to Sulfides Applying [B(Pin)]2 as Deoxygenation Reagents. Catalysis Letters, 2012, 142, 1306-1311.	1.4	22
70	Nickel Complexes Modified by O,N,O'‣igands as Synthons for the Straightforward Synthesis of Highly Efficient Precatalysts for CïŁ¿C Bond Formation. Asian Journal of Organic Chemistry, 2012, 1, 322-326.	1.3	10
71	Iron-based pre-catalyst supported on polyformamidine for Câ \in C bond formation. Polymer Chemistry, 2012, 3, 751.	1.9	5
72	Bis(silylenyl)―and Bis(germylenyl)‧ubstituted Ferrocenes: Synthesis, Structure, and Catalytic Applications of Bidentate Silicon(II)–Cobalt Complexes. Angewandte Chemie - International Edition, 2012, 51, 6167-6171.	7.2	165

#	Article	IF	CITATIONS
73	The Rise of the Iron Age in Hydrogen Evolution?. ChemCatChem, 2012, 4, 323-325.	1.8	20
74	Weimar-The Place to be for Catalysis in Germany. ChemCatChem, 2012, 4, 1068-1069.	1.8	1
75	Lowâ€Temperature Ironâ€Catalyzed Depolymerization of Polyethers. ChemSusChem, 2012, 5, 1195-1198.	3.6	30
76	Application of a Nickel-Bispidine Complex as Pre-Catalyst for C(sp 2)–C(sp 3) Bond Formations. Catalysis Letters, 2012, 142, 557-565.	1.4	16
77	Straightforward zinc-catalyzed transformation of aldehydes and hydroxylamine hydrochloride to nitriles. Tetrahedron Letters, 2012, 53, 882-885.	0.7	38
78	Zincâ€Catalyzed Depolymerization of Artificial Polyethers. Chemistry - A European Journal, 2012, 18, 1910-1913.	1.7	40
79	Application of Nickel Complexes Modified by Tridentate <i>O</i> , <i>N</i> , <i>O′</i> àê€Ligands as Precatalysts in Nickelâ€Catalyzed C(sp ²)–C(sp ³) Bond Formations. European Journal of Inorganic Chemistry, 2012, 2012, 1269-1277.	1.0	29
80	An Efficient Zinc atalyzed Dehydration of Primary Amides to Nitriles. Chemistry - an Asian Journal, 2012, 7, 169-175.	1.7	63
81	Hydrosilylation of Alkynes by Ni(CO) ₃ ‣tabilized Silicon(II) Hydride. Angewandte Chemie - International Edition, 2012, 51, 399-403.	7.2	65
82	Synthesis of \hat{l} - and $\hat{l}\mu$ -Cyanoesters by Zinc-Catalyzed Ring-Opening of Cyclic Ethers with Acid Chlorides and Subsequent Cyanation. Catalysis Letters, 2012, 142, 168-175.	1.4	18
83	A straightforward zinc-catalysed reduction of sulfoxides to sulfides. Catalysis Science and Technology, 2011, 1, 104.	2.1	50
84	Palladium-catalysed hydroxylation and alkoxylation. Chemical Society Reviews, 2011, 40, 4912.	18.7	373
85	Highly Selective Iron atalyzed Synthesis of Alkenes by the Reduction of Alkynes. Chemistry - an Asian Journal, 2011, 6, 1613-1623.	1.7	80
86	A Facile and Efficient Ironâ€Catalyzed Reduction of Sulfoxides to Sulfides. ChemCatChem, 2011, 3, 666-670.	1.8	55
87	Lowâ€Valent Molybdenumâ€Based Dual Preâ€Catalysts for Highly Efficient Catalytic Epoxidation of Alkenes and Deoxygenation of Sulfoxides. ChemCatChem, 2011, 3, 1186-1192.	1.8	47
88	The Ironâ€Catalyzed Oxidation of Alkynes—1,2â€Dione Formation Versus Oxidative Cleavage—A Matter of Temperature. ChemCatChem, 2011, 3, 1929-1934.	1.8	21
89	Practical One-Pot Synthesis of Secondary Amines by Zinc-Catalyzed Reductive Amination. Catalysis Letters, 2011, 141, 55-61.	1.4	63
90	Reduction of Sulfoxides to Sulfides in the Presence of Copper Catalysts. Catalysis Letters, 2011, 141, 833-838.	1.4	25

#	Article	IF	Citations
91	Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catalysis Letters, 2011, 141, 1079-1085.	1.4	30
92	Intermolecular Hydrogen-Fluorine Interaction in Dimolybdenum Triply Bonded Complexes Modified by Fluorinated Formamidine Ligands for the Construction of 2D- and 3D-Networks. European Journal of Inorganic Chemistry, 2011, 2011, 2103-2111.	1.0	17
93	Synthesis, Characterization and Catalytic Application of Iron Complexes Modified by Monodentate Phosphane Ligands. European Journal of Inorganic Chemistry, 2011, 2011, 2797-2802.	1.0	49
94	New Binding Modes of 1-Acetyl- and 1-Benzoyl-5-hydroxypyrazolines - Synthesis and Characterization of O,O′-Pyrazoline- and N,O-Pyrazoline-Zinc Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 2691-2697.	1.0	26
95	Straightforward Ironâ€Catalyzed Synthesis of Nitriles by Dehydration of Primary Amides. European Journal of Organic Chemistry, 2011, 2011, 4760-4763.	1.2	28
96	Straightforward Uraniumâ€Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry - A European Journal, 2011, 17, 9316-9319.	1.7	60
97	Facile and Efficient Reduction of Ketones in the Presence of Zinc Catalysts Modified by Phenol Ligands. Chemistry - an Asian Journal, 2010, 5, 2027-2035.	1.7	57
98	Palladium atalyzed Enantioselective Hydrosilylation of Aromatic Olefins. ChemCatChem, 2010, 2, 453-458.	1.8	28
99	High Efficiency in Catalytic Hydrosilylation of Ketones with Zincâ€Based Precatalysts Featuring Hard and Soft Tridentate O,S,Oâ€Ligands. ChemCatChem, 2010, 2, 846-853.	1.8	55
100	Synthesis of Secondary Amines by Ironâ€Catalyzed Reductive Amination. ChemCatChem, 2010, 2, 1411-1415.	1.8	69
101	Selective Catalytic Reductions of Amides and Nitriles to Amines. Topics in Catalysis, 2010, 53, 979-984.	1.3	107
102	Ammonia: An Environmentally Friendly Nitrogen Source for Primary Aniline Synthesis. ChemSusChem, 2010, 3, 1024-1029.	3.6	42
103	Formamidines – Versatile Ligands for Zincâ€Catalyzed Hydrosilylation and Ironâ€Catalyzed Epoxidation Reactions. European Journal of Organic Chemistry, 2010, 2010, 4893-4901.	1.2	85
104	Ironâ€Catalyzed Epoxidation of Aromatic Olefins and 1,3â€Dienes. Advanced Synthesis and Catalysis, 2010, 352, 1771-1778.	2.1	62
105	Carbon dioxide and formic acidâ€"the couple for environmental-friendly hydrogen storage?. Energy and Environmental Science, 2010, 3, 1207.	15.6	657
106	Iridiumâ€Catalysed Asymmetric Hydrogenation of Enamides in the Presence of 3,3′â€Substituted H8â€Phosphoramidites. Advanced Synthesis and Catalysis, 2009, 351, 1437-1441.	2.1	27
107	A General Palladiumâ€Catalyzed Amination of Aryl Halides with Ammonia. Chemistry - A European Journal, 2009, 15, 4528-4533.	1.7	156
108	Design of and Mechanistic Studies on a Biomimetic Iron–Imidazole Catalyst System for Epoxidation of Olefins with Hydrogen Peroxide. Chemistry - A European Journal, 2009, 15, 5471-5481.	1.7	63

#	Article	IF	CITATIONS
109	Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines. Tetrahedron Letters, 2009, 50, 3654-3656.	0.7	81
110	Synthesis and application of chiral monodentate phosphines in asymmetric hydrogenation. Coordination Chemistry Reviews, 2008, 252, 471-491.	9.5	106
111	A General and Environmentally Benign Catalytic Reduction of Nitriles to Primary Amines. Chemistry - A European Journal, 2008, 14, 9491-9494.	1.7	105
112	Carbon Dioxide—The Hydrogenâ€Storage Material of the Future?. ChemSusChem, 2008, 1, 801-804.	3.6	230
113	A Practical and Benign Synthesis of Primary Amines through Ruthenium atalyzed Reduction of Nitriles. ChemSusChem, 2008, 1, 1006-1010.	3.6	100
114	Iridiumâ€Catalyzed Hydrogenation of βâ€Dehydroamino Acid Derivatives Using Monodentate Phosphoramidites. European Journal of Organic Chemistry, 2008, 2008, 3352-3362.	1.2	33
115	Dynamic Kinetic Resolution of αâ€Amino Acid Esters in the Presence of Aldehydes. European Journal of Organic Chemistry, 2008, 2008, 3506-3512.	1.2	31
116	Ironâ€Catalyzed Enantioselective Hydrosilylation of Ketones. Angewandte Chemie - International Edition, 2008, 47, 2497-2501.	7.2	258
117	Sustainable Metal Catalysis with Iron: From Rust to a Rising Star?. Angewandte Chemie - International Edition, 2008, 47, 3317-3321.	7.2	1,101
118	Biomimetic transfer hydrogenation of 2-alkoxy- and 2-aryloxyketones with iron–porphyrin catalysts. Tetrahedron, 2008, 64, 3867-3876.	1.0	64
119	Novel rhodium catalyst for asymmetric hydroformylation of styrene: Study of electronic and steric effects of phosphorus seven-membered ring ligands. Journal of Molecular Catalysis A, 2008, 280, 148-155.	4.8	31
120	Synthesis of Novel Monodentate Phosphoramidites and Their Application in Iridium atalyzed Asymmetric Hydrogenations. Chemistry - an Asian Journal, 2008, 3, 887-894.	1.7	18
121	Synthesis of Enantiomerically Pure 1,2,3,4â€Tetrahydroâ€Î²â€carbolines and <i>N</i> à€Acylâ€1â€aryl Ethylamine Rhodiumâ€Catalyzed Hydrogenation. Chemistry - an Asian Journal, 2008, 3, 1104-1110.	s.by 1.7	21
122	Development of Practical Rhodium Phosphine Catalysts for the Hydrogenation of \hat{l}^2 -Dehydroamino Acid Derivatives. Organic Process Research and Development, 2007, 11, 568-577.	1.3	43
123	New Ruthenium Catalysts for Asymmetric Transfer Hydrogenation of Prochiral Ketones. Advanced Synthesis and Catalysis, 2007, 349, 853-860.	2.1	88
124	Enantioselective rhodium-catalyzed hydrogenation of enol carbamates in the presence of monodentate phosphines. Tetrahedron: Asymmetry, 2007, 18, 1288-1298.	1.8	37
125	Efficient transfer hydrogenation of ketones in the presence of ruthenium N-heterocyclic carbene catalysts. Journal of Organometallic Chemistry, 2006, 691, 4652-4659.	0.8	69
126	Biomimetic transfer hydrogenation of ketones with iron porphyrin catalysts. Tetrahedron Letters, 2006, 47, 8095-8099.	0.7	110

#	Article	IF	CITATION
127	An Environmentally Benign Process for the Hydrogenation of Ketones with Homogeneous Iron Catalysts. Chemistry - an Asian Journal, 2006, 1, 598-604.	1.7	134
128	Enantioselective Rhodium-Catalyzed Hydrogenation of Enamides in the Presence of Chiral Monodentate Phosphanes. European Journal of Organic Chemistry, 2006, 2006, 2912-2917.	1.2	44
129	A General Method for the Enantioselective Hydrogenation of \hat{l}^2 -Keto Esters using Monodentate Binaphthophosphepine Ligands. Advanced Synthesis and Catalysis, 2005, 347, 1978-1986.	2.1	48
130	Synthesis of Chiral Monodentate Binaphthophosphepine Ligands and Their Application in Asymmetric Hydrogenations ChemInform, 2005, 36, no.	0.1	0
131	Enantioselective Hydrogenation of \hat{l}^2 -Ketoesters with Monodentate Ligands Chemlnform, 2005, 36, no.	0.1	0
132	Enantioselective Hydrogenation of \hat{l}^2 -Ketoesters with Monodentate Ligands. Angewandte Chemie - International Edition, 2004, 43, 5066-5069.	7.2	57
133	Synthesis of chiral monodentate binaphthophosphepine ligands and their application in asymmetric hydrogenations. Tetrahedron: Asymmetry, 2004, 15, 2621-2631.	1.8	59