
Stephan Enthaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4875929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable Metal Catalysis with Iron: From Rust to a Rising Star?. Angewandte Chemie - International Edition, 2008, 47, 3317-3321.	7.2	1,101
2	Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?. Energy and Environmental Science, 2010, 3, 1207.	15.6	657
3	Palladium-catalysed hydroxylation and alkoxylation. Chemical Society Reviews, 2011, 40, 4912.	18.7	373
4	Iron atalyzed Enantioselective Hydrosilylation of Ketones. Angewandte Chemie - International Edition, 2008, 47, 2497-2501.	7.2	258
5	Carbon Dioxide—The Hydrogenâ€Storage Material of the Future?. ChemSusChem, 2008, 1, 801-804.	3.6	230
6	Rise of the Zinc Age in Homogeneous Catalysis?. ACS Catalysis, 2013, 3, 150-158.	5.5	178
7	Bis(silylenyl)―and Bis(germylenyl)â€Substituted Ferrocenes: Synthesis, Structure, and Catalytic Applications of Bidentate Silicon(II)–Cobalt Complexes. Angewandte Chemie - International Edition, 2012, 51, 6167-6171.	7.2	165
8	A General Palladium atalyzed Amination of Aryl Halides with Ammonia. Chemistry - A European Journal, 2009, 15, 4528-4533.	1.7	156
9	An Environmentally Benign Process for the Hydrogenation of Ketones with Homogeneous Iron Catalysts. Chemistry - an Asian Journal, 2006, 1, 598-604.	1.7	134
10	Electron-Rich N-Heterocyclic Silylene (NHSi)–Iron Complexes: Synthesis, Structures, and Catalytic Ability of an Isolable Hydridosilylene–Iron Complex. Journal of the American Chemical Society, 2013, 135, 6703-6713.	6.6	131
11	Biomimetic transfer hydrogenation of ketones with iron porphyrin catalysts. Tetrahedron Letters, 2006, 47, 8095-8099.	0.7	110
12	Selective Catalytic Reductions of Amides and Nitriles to Amines. Topics in Catalysis, 2010, 53, 979-984.	1.3	107
13	Synthesis and application of chiral monodentate phosphines in asymmetric hydrogenation. Coordination Chemistry Reviews, 2008, 252, 471-491.	9.5	106
14	A General and Environmentally Benign Catalytic Reduction of Nitriles to Primary Amines. Chemistry - A European Journal, 2008, 14, 9491-9494.	1.7	105
15	Exploring the Reactivity of Nickel Pincer Complexes in the Decomposition of Formic Acid to CO ₂ /H ₂ and the Hydrogenation of NaHCO ₃ to HCOONa. ChemCatChem, 2015, 7, 65-69.	1.8	105
16	A Practical and Benign Synthesis of Primary Amines through Ruthenium atalyzed Reduction of Nitriles. ChemSusChem, 2008, 1, 1006-1010.	3.6	100
17	Bis- <i>N</i> -Heterocyclic Carbene (NHC) Stabilized η ⁶ -Arene Iron(0) Complexes: Synthesis, Structure, Reactivity, and Catalytic Activity. Journal of the American Chemical Society, 2013, 135, 18108-18120.	6.6	98
18	New Ruthenium Catalysts for Asymmetric Transfer Hydrogenation of Prochiral Ketones. Advanced Synthesis and Catalysis, 2007, 349, 853-860.	2.1	88

#	Article	IF	CITATIONS
19	Straightforward Iron atalyzed Synthesis of Vinylboronates by the Hydroboration of Alkynes. Chemistry - an Asian Journal, 2013, 8, 50-54.	1.7	88
20	Formamidines – Versatile Ligands for Zinc atalyzed Hydrosilylation and Iron atalyzed Epoxidation Reactions. European Journal of Organic Chemistry, 2010, 2010, 4893-4901.	1.2	85
21	Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines. Tetrahedron Letters, 2009, 50, 3654-3656.	0.7	81
22	Highly Selective Iron atalyzed Synthesis of Alkenes by the Reduction of Alkynes. Chemistry - an Asian Journal, 2011, 6, 1613-1623.	1.7	80
23	Synthesis of Mixed Silylene–Carbene Chelate Ligands from Nâ€Heterocyclic Silylcarbenes Mediated by Nickel. Angewandte Chemie - International Edition, 2015, 54, 2214-2218.	7.2	78
24	A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks. Polymer Chemistry, 2013, 4, 1848.	1.9	70
25	Efficient transfer hydrogenation of ketones in the presence of ruthenium N-heterocyclic carbene catalysts. Journal of Organometallic Chemistry, 2006, 691, 4652-4659.	0.8	69
26	Synthesis of Secondary Amines by Iron atalyzed Reductive Amination. ChemCatChem, 2010, 2, 1411-1415.	1.8	69
27	Hydrosilylation of Alkynes by Ni(CO) ₃ ‣tabilized Silicon(II) Hydride. Angewandte Chemie - International Edition, 2012, 51, 399-403.	7.2	65
28	Biomimetic transfer hydrogenation of 2-alkoxy- and 2-aryloxyketones with iron–porphyrin catalysts. Tetrahedron, 2008, 64, 3867-3876.	1.0	64
29	Design of and Mechanistic Studies on a Biomimetic Iron–Imidazole Catalyst System for Epoxidation of Olefins with Hydrogen Peroxide. Chemistry - A European Journal, 2009, 15, 5471-5481.	1.7	63
30	Practical One-Pot Synthesis of Secondary Amines by Zinc-Catalyzed Reductive Amination. Catalysis Letters, 2011, 141, 55-61.	1.4	63
31	An Efficient Zinc atalyzed Dehydration of Primary Amides to Nitriles. Chemistry - an Asian Journal, 2012, 7, 169-175.	1.7	63
32	Ironâ€Catalyzed Epoxidation of Aromatic Olefins and 1,3â€Đienes. Advanced Synthesis and Catalysis, 2010, 352, 1771-1778.	2.1	62
33	Straightforward Uranium atalyzed Dehydration of Primary Amides to Nitriles. Chemistry - A European Journal, 2011, 17, 9316-9319.	1.7	60
34	Synthesis of chiral monodentate binaphthophosphepine ligands and their application in asymmetric hydrogenations. Tetrahedron: Asymmetry, 2004, 15, 2621-2631.	1.8	59
35	Enantioselective Hydrogenation ofβ-Ketoesters with Monodentate Ligands. Angewandte Chemie - International Edition, 2004, 43, 5066-5069.	7.2	57
36	Facile and Efficient Reduction of Ketones in the Presence of Zinc Catalysts Modified by Phenol Ligands. Chemistry - an Asian Journal, 2010, 5, 2027-2035.	1.7	57

#	Article	IF	CITATIONS
37	High Efficiency in Catalytic Hydrosilylation of Ketones with Zincâ€Based Precatalysts Featuring Hard and Soft Tridentate O,S,Oâ€Ligands. ChemCatChem, 2010, 2, 846-853.	1.8	55
38	A Facile and Efficient Iron atalyzed Reduction of Sulfoxides to Sulfides. ChemCatChem, 2011, 3, 666-670.	1.8	55
39	A straightforward zinc-catalysed reduction of sulfoxides to sulfides. Catalysis Science and Technology, 2011, 1, 104.	2.1	50
40	Synthesis, Characterization and Catalytic Application of Iron Complexes Modified by Monodentate Phosphane Ligands. European Journal of Inorganic Chemistry, 2011, 2011, 2797-2802.	1.0	49
41	Application of a Bis(silylene) Nickel Complex as Precatalyst in C–C Bond Formation Reactions. Chemistry Letters, 2013, 42, 286-288.	0.7	49
42	Polyformamidineâ€Derived Nonâ€Noble Metal Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2018, 28, 1707551.	7.8	49
43	A General Method for the Enantioselective Hydrogenation of β-Keto Esters using Monodentate Binaphthophosphepine Ligands. Advanced Synthesis and Catalysis, 2005, 347, 1978-1986.	2.1	48
44	Lowâ€Valent Molybdenumâ€Based Dual Preâ€Catalysts for Highly Efficient Catalytic Epoxidation of Alkenes and Deoxygenation of Sulfoxides. ChemCatChem, 2011, 3, 1186-1192.	1.8	47
45	Depolymerization of Endâ€ofâ€Life Poly(lactide) via 4â€Dimethylaminopyridineâ€Catalyzed Methanolysis. ChemistrySelect, 2019, 4, 6845-6848.	0.7	46
46	Nickel-catalyzed hydrodehalogenation of aryl halides. Journal of Organometallic Chemistry, 2013, 729, 53-59.	0.8	45
47	Enantioselective Rhodium-Catalyzed Hydrogenation of Enamides in the Presence of Chiral Monodentate Phosphanes. European Journal of Organic Chemistry, 2006, 2006, 2912-2917.	1.2	44
48	Development of Practical Rhodium Phosphine Catalysts for the Hydrogenation of β-Dehydroamino Acid Derivatives. Organic Process Research and Development, 2007, 11, 568-577.	1.3	43
49	Ammonia: An Environmentally Friendly Nitrogen Source for Primary Aniline Synthesis. ChemSusChem, 2010, 3, 1024-1029.	3.6	42
50	Chemical Recycling of Endâ€ofâ€Life Polyamide 6 via Ring Closing Depolymerization. ChemistrySelect, 2019, 4, 12638-12642.	0.7	42
51	Nickel-catalyzed C(sp2)–C(sp2) Cross Coupling Reactions of Sulfur-Functionalities and Grignard Reagents. Catalysis Letters, 2013, 143, 424-431.	1.4	41
52	Zincâ€Catalyzed Depolymerization of Artificial Polyethers. Chemistry - A European Journal, 2012, 18, 1910-1913.	1.7	40
53	Zincâ€Catalyzed Depolymerization of Endâ€ofâ€Life Polysiloxanes. Angewandte Chemie - International Edition, 2014, 53, 2716-2721.	7.2	40
54	Straightforward zinc-catalyzed transformation of aldehydes and hydroxylamine hydrochloride to nitriles. Tetrahedron Letters, 2012, 53, 882-885.	0.7	38

#	Article	IF	CITATIONS
55	Enantioselective rhodium-catalyzed hydrogenation of enol carbamates in the presence of monodentate phosphines. Tetrahedron: Asymmetry, 2007, 18, 1288-1298.	1.8	37
56	Ironâ€Catalyzed Ringâ€Closing Depolymerization of Poly(tetrahydrofuran). ChemSusChem, 2013, 6, 1334-1336.	3.6	36
57	Selective Degradation of Endâ€ofâ€Life Poly(lactide) via Alkaliâ€Metalâ€Halide Catalysis. Advanced Sustainable Systems, 2020, 4, 1900081.	2.7	34
58	Iridiumâ€Catalyzed Hydrogenation of βâ€Đehydroamino Acid Derivatives Using Monodentate Phosphoramidites. European Journal of Organic Chemistry, 2008, 2008, 3352-3362.	1.2	33
59	Tin(<scp>ii</scp>) 2-ethylhexanoate catalysed methanolysis of end-of-life poly(lactide). Polymer Chemistry, 2020, 11, 2625-2629.	1.9	33
60	Dynamic Kinetic Resolution of αâ€Amino Acid Esters in the Presence of Aldehydes. European Journal of Organic Chemistry, 2008, 2008, 3506-3512.	1.2	31
61	Novel rhodium catalyst for asymmetric hydroformylation of styrene: Study of electronic and steric effects of phosphorus seven-membered ring ligands. Journal of Molecular Catalysis A, 2008, 280, 148-155.	4.8	31
62	Reductive Cleavage of Amides to Alcohols and Amines Catalyzed by Wellâ€Defined Bimetallic Molybdenum Complexes. Chemistry - A European Journal, 2012, 18, 15267-15271.	1.7	31
63	Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catalysis Letters, 2011, 141, 1079-1085.	1.4	30
64	Lowâ€Temperature Iron atalyzed Depolymerization of Polyethers. ChemSusChem, 2012, 5, 1195-1198.	3.6	30
65	Spent coffee ground as source for hydrocarbon fuels. Journal of Energy Chemistry, 2016, 25, 146-152.	7.1	30
66	Application of Nickel Complexes Modified by Tridentate <i>O</i> , <i>N</i> , <i>O′</i> ‣igands as Precatalysts in Nickelâ€Catalyzed C(sp ²)–C(sp ³) Bond Formations. European Journal of Inorganic Chemistry, 2012, 2012, 1269-1277.	1.0	29
67	Ruthenium atalyzed Hydrogenative Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate). ChemistrySelect, 2019, 4, 12268-12271.	0.7	29
68	Depolymerization of Endâ€ofâ€Life Poly(lactide) to Lactide via Zincâ€Catalysis. ChemistrySelect, 2020, 5, 14759-14763.	0.7	29
69	Palladium atalyzed Enantioselective Hydrosilylation of Aromatic Olefins. ChemCatChem, 2010, 2, 453-458.	1.8	28
70	Straightforward Iron atalyzed Synthesis of Nitriles by Dehydration of Primary Amides. European Journal of Organic Chemistry, 2011, 2011, 4760-4763.	1.2	28
71	Iridium atalysed Asymmetric Hydrogenation of Enamides in the Presence of 3,3′‣ubstituted H8â€Phosphoramidites. Advanced Synthesis and Catalysis, 2009, 351, 1437-1441.	2.1	27
72	Nickelâ€eatalyzed Hydrodecyanation of Carbon–Cyano Bonds. Asian Journal of Organic Chemistry, 2013, 2, 150-156.	1.3	27

#	Article	IF	CITATIONS
73	New Binding Modes of 1-Acetyl- and 1-Benzoyl-5-hydroxypyrazolines - Synthesis and Characterization of O,O′-Pyrazoline- and N,O-Pyrazoline-Zinc Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 2691-2697.	1.0	26
74	Reduction of Sulfoxides to Sulfides in the Presence of Copper Catalysts. Catalysis Letters, 2011, 141, 833-838.	1.4	25
75	Deoxygenation of Sulfoxides to Sulfides in the Presence of Zinc Catalysts and Boranes as Reducing Reagents. Catalysis Letters, 2012, 142, 1003-1010.	1.4	25
76	Depolymerization of End-of-Life Poly(bisphenol A carbonate) via 4-Dimethylaminopyridine-Catalyzed Methanolysis. Waste and Biomass Valorization, 2020, 11, 4621-4629.	1.8	24
77	Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate). ChemistrySelect, 2020, 5, 10010-10014.	0.7	24
78	Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate) via Alkaliâ€Metalâ€Halideâ€Catalyzed Methanolysis. Asian Journal of Organic Chemistry, 2020, 9, 359-363.	1.3	23
79	Zinc-Catalyzed Deoxygenation of Sulfoxides to Sulfides Applying [B(Pin)]2 as Deoxygenation Reagents. Catalysis Letters, 2012, 142, 1306-1311.	1.4	22
80	Lowâ€Temperature Depolymerization of Polysiloxanes with Iron Catalysis. ChemSusChem, 2014, 7, 2030-2036.	3.6	22
81	Rutheniumâ€Catalyzed Hydrogenative Degradation of Endâ€ofâ€Life Poly(lactide) to Produce 1,2â€Propanediol as Platform Chemical. ChemistryOpen, 2020, 9, 401-404.	0.9	22
82	Synthesis of Enantiomerically Pure 1,2,3,4â€Tetrahydroâ€Î²â€carbolines and <i>N</i> â€Acylâ€1â€aryl Ethylamine Rhodiumâ€Catalyzed Hydrogenation. Chemistry - an Asian Journal, 2008, 3, 1104-1110.	es by 1.7	21
83	The Iron atalyzed Oxidation of Alkynes—1,2â€Đione Formation Versus Oxidative Cleavage—A Matter of Temperature. ChemCatChem, 2011, 3, 1929-1934.	1.8	21
84	Zinc(II)â€ŧriflate as catalyst precursor for ringâ€ɛlosing depolymerization of endâ€ofâ€life polytetrahydrofuran to produce tetrahydrofuran. Journal of Applied Polymer Science, 2014, 131, .	1.3	21
85	Recycling of Endâ€ofâ€Life Poly(bisphenol A carbonate) via Alkali Metal Halideâ€Catalyzed Phenolysis. ChemistryOpen, 2019, 8, 822-827.	0.9	21
86	Chemical Recycling of Endâ€ofâ€Life Poly(lactide) via Zincâ€Catalyzed Depolymerization and Polymerization. ChemistryOpen, 2020, 9, 1224-1228.	0.9	21
87	The Rise of the Iron Age in Hydrogen Evolution?. ChemCatChem, 2012, 4, 323-325.	1.8	20
88	Hydrogenative Depolymerization of Endâ€ofâ€Life Polyâ€(Bisphenol A Carbonate) Catalyzed by a Rutheniumâ€MACHOâ€Complex. ChemistryOpen, 2019, 8, 1410-1412.	0.9	19
89	Synthesis of Novel Monodentate Phosphoramidites and Their Application in Iridiumâ€Catalyzed Asymmetric Hydrogenations. Chemistry - an Asian Journal, 2008, 3, 887-894.	1.7	18
90	Synthesis of Î΄- and Îμ-Cyanoesters by Zinc-Catalyzed Ring-Opening of Cyclic Ethers with Acid Chlorides and Subsequent Cyanation. Catalysis Letters, 2012, 142, 168-175.	1.4	18

#	Article	IF	CITATIONS
91	Recycling Concept for End-of-Life Silicones: Boron Trifluoride Diethyl Etherate as Depolymerization Reagent to Produce Difluorodimethylsilane as Useful Commodity. ACS Sustainable Chemistry and Engineering, 2015, 3, 163-169.	3.2	18
92	Iron atalyzed depolymerization of polysiloxanes to produce dichlorodimethylsilane, diacetoxydimethylsilane, or dimethoxydimethylsilane. Journal of Applied Polymer Science, 2015, 132, .	1.3	18
93	Intermolecular Hydrogen-Fluorine Interaction in Dimolybdenum Triply Bonded Complexes Modified by Fluorinated Formamidine Ligands for the Construction of 2D- and 3D-Networks. European Journal of Inorganic Chemistry, 2011, 2011, 2103-2111.	1.0	17
94	Application of a Nickel-Bispidine Complex as Pre-Catalyst for C(sp 2)–C(sp 3) Bond Formations. Catalysis Letters, 2012, 142, 557-565.	1.4	16
95	Exploring the reactivity of nickel complexes inÂhydrodecyanation reactions. Journal of Organometallic Chemistry, 2013, 745-746, 262-274.	0.8	16
96	Synthesis, characterization and application of nickel(II) complexes modified with N,N′,N″-pincer ligands. Inorganica Chimica Acta, 2015, 425, 118-123.	1.2	16
97	From elusive thio- and selenosilanoic acids to copper(i) complexes with intermolecular Siî€E → Cu–O–Si coordination modes (E = S, Se). Chemical Communications, 2013, 49, 5595.	2.2	15
98	Zinc-Catalyzed Depolymerization of Polyethers to Produce Valuable Building Blocks. Catalysis Letters, 2014, 144, 850-859.	1.4	15
99	Application of Bismuth Catalysts for the Methanolysis of Endâ€ofâ€Life Poly(lactide). ChemistrySelect, 2020, 5, 12313-12316.	0.7	15
100	Exploring the coordination chemistry of 2-picolinic acid to zinc and application of the complexes in catalytic oxidation chemistry. Inorganic Chemistry Communication, 2014, 46, 320-323.	1.8	14
101	Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate) via Transesterification with Acetic Anhydride as Depolymerization Reagent. ChemistrySelect, 2019, 4, 2639-2643.	0.7	14
102	Application of fatty acid chlorides in the ironâ€catalyzed depolymerization of polyethers. European Journal of Lipid Science and Technology, 2013, 115, 239-245.	1.0	13
103	Conversion of Poly(methylhydrosiloxane) Waste to Useful Commodities. Catalysis Letters, 2016, 146, 345-352.	1.4	13
104	Depolymerization protocol for linear, branched, and crosslinked endâ€ofâ€life silicones with boron trifluoride diethyl etherate as the depolymerization reagent. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
105	Ironâ€catalyzed depolymerizations of silicones with hexanoic anhydride provide a potential recycling method for endâ€ofâ€life polymers. European Journal of Lipid Science and Technology, 2015, 117, 778-785.	1.0	12
106	Hydrogenative Depolymerization of Endâ€ofâ€Life Poly(bisphenol A carbonate) with <i>in</i> â€ <i>situ</i> Generated Ruthenium Catalysts. ChemistrySelect, 2020, 5, 4231-4234.	0.7	12
107	Zincâ€Catalyzed Chemical Recycling of Poly(ϵâ€caprolactone) Applying Transesterification Reactions. ChemistrySelect, 2021, 6, 8063-8067.	0.7	12
108	Nickel Complexes Modified by O,N,O'‣igands as Synthons for the Straightforward Synthesis of Highly Efficient Precatalysts for CC Bond Formation. Asian Journal of Organic Chemistry, 2012, 1, 322-326.	1.3	10

#	Article	IF	CITATIONS
109	Iron-catalyzed depolymerizations of end-of-life silicones with fatty alcohols. Resource-efficient Technologies, 2015, 1, 73-79.	0.1	9
110	Introducing Students to Feedstock Recycling of End-of-Life Silicones via a Low-Temperature, Iron-Catalyzed Depolymerization Process. Journal of Chemical Education, 2015, 92, 703-707.	1.1	9
111	Hydrogenative Depolymerization of Endâ€of‣ife Polycarbonates by an Iron Pincer Complex. ChemistryOpen, 2020, 9, 818-821.	0.9	9
112	Synthesis of Ni(II) complexes with unsymmetric [O,N,O′]-pincer ligands and their use as precatalysts in carbon–carbon bond formations to access diarylmethanes. Inorganica Chimica Acta, 2014, 421, 136-144.	1.2	8
113	Zincâ€Catalyzed Depolymerization of the Endâ€ofâ€Life Poly(ethylene 2,5â€furandicarboxylate). ChemistrySelect, 2021, 6, 7972-7975.	0.7	7
114	Exploring the coordination chemistry of O,N,O′-ligands modified by 2-thienyl-substituents to nickel. Inorganic Chemistry Communication, 2014, 44, 114-118.	1.8	6
115	Synthesis and structural characterization of a trispyrrole iron(II) complex K(dme)4[tpaMesFe] and application in nitrous oxide dependent coupling reactions. Inorganic Chemistry Communication, 2015, 54, 1-4.	1.8	6
116	Illustrating Plastic Production and End-of-Life Plastic Treatment with Interlocking Building Blocks. Journal of Chemical Education, 2017, 94, 1746-1751.	1.1	6
117	Iron-based pre-catalyst supported on polyformamidine for C–C bond formation. Polymer Chemistry, 2012, 3, 751.	1.9	5
118	Dual functionality of formamidine polymers, as ligands and as bases, in ruthenium-catalysed hydrogen evolution from formic acid. Polymer Chemistry, 2013, 4, 2741.	1.9	5
119	Exploring the coordination chemistry of 1-benzoyl-4,5-dihydro-3,5-bis(trifluoromethyl)-1H-pyrazol-5-ol to copper. Inorganic Chemistry Communication, 2013, 38, 131-134.	1.8	4
120	Exploring the reactivity of dimethylzinc with fluorine substituted 1-phenyl-4,5-dihydro-1H-pyrazol-5-ols. Journal of Fluorine Chemistry, 2014, 157, 12-18.	0.9	4
121	Synthesis, characterization and application of iron N-substituted imidazole complexes with the motif ClFeL4OFeCl3. Inorganic Chemistry Communication, 2015, 51, 4-8.	1.8	4
122	2â€(1 <i>S</i>)â€Camphanoyloxyâ€2â€2â€phosphanylbiphenyl Ligands – Synthesis, Structure, and Preliminary in Transitionâ€Metal Catalysis. European Journal of Inorganic Chemistry, 2017, 2017, 2762-2773.	Tests I.O	4
123	Nickel complexes with a O,N,O′-ligand and a phosphane co-ligand – Monometallic versus bimetallic complexes. Inorganica Chimica Acta, 2015, 434, 37-40.	1.2	3
124	Depolymerization of Poly(1,2â€propylene carbonate) via Ring Closing Depolymerization and Methanolysis. ChemistrySelect, 2022, 7, .	0.7	3
125	Nitrous Oxide-dependent Iron-catalyzed Coupling Reactions of Grignard Reagents. Chimia, 2015, 69, 327.	0.3	2
126	Synthesis and characterization of iron(II) and iron(III) complexes with a tridentate O,N,O′-ligand. Inorganic Chemistry Communication, 2015, 52, 56-59.	1.8	2

#	Article	IF	CITATIONS
127	Rutheniumâ€catalyzed Chemical Recycling of Poly(ïµâ€caprolactone) via Hydrogenative Depolymerization and Dehydrogenative Polymerization. ChemistrySelect, 2021, 6, 11244-11248.	0.7	2
128	Weimar-The Place to be for Catalysis in Germany. ChemCatChem, 2012, 4, 1068-1069.	1.8	1
129	Depolymerization of end-of-life poly(dimethylsilazane) with boron trifluoride diethyl etherate to produce difluorodimethylsilane as useful commodity. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1189-1193.	0.8	1
130	Chemical Recycling of Endâ€ofâ€Life Poly(lactide) via Zincâ€Catalyzed Depolymerization and Polymerization. ChemistryOpen, 2020, 9, 1223-1223.	0.9	1
131	Synthesis of Chiral Monodentate Binaphthophosphepine Ligands and Their Application in Asymmetric Hydrogenations ChemInform, 2005, 36, no.	0.1	0
132	Enantioselective Hydrogenation of \hat{I}^2 -Ketoesters with Monodentate Ligands ChemInform, 2005, 36, no.	0.1	0
133	Synthesis, isolation and characterization of dinuclear oxidodiiron(III) complexes modified by monodentate pyridines. Inorganic Chemistry Communication, 2016, 66, 73-78.	1.8	0