Joana Azeredo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4875817/publications.pdf

Version: 2024-02-01

239 papers 14,303 citations

63 h-index 107 g-index

249 all docs

249 docs citations

249 times ranked 14291 citing authors

#	Article	IF	CITATIONS
1	<i>Candida glabrata, Candida parapsilosis</i> i>and <i>Candida tropicalis</i> pathogenicity and antifungal resistance. FEMS Microbiology Reviews, 2012, 36, 288-305.	3.9	714
2	Critical review on biofilm methods. Critical Reviews in Microbiology, 2017, 43, 313-351.	2.7	693
3	Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Critical Reviews in Microbiology, 2016, 42, 905-927.	2.7	399
4	Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Applied Microbiology and Biotechnology, 2016, 100, 2141-2151.	1.7	334
5	Biofilms of non- <i>Candida albicans Candida</i> species: quantification, structure and matrix composition. Medical Mycology, 2009, 47, 681-689.	0.3	318
6	Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiology and Molecular Biology Reviews, 2016, 80, 523-543.	2.9	310
7	Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Research in Microbiology, 2005, 156, 506-514.	1.0	280
8	Engineered Endolysin-Based "Artilysins―To Combat Multidrug-Resistant Gram-Negative Pathogens. MBio, 2014, 5, e01379-14.	1.8	279
9	Revisiting phage therapy: new applications for old resources. Trends in Microbiology, 2015, 23, 185-191.	3.5	266
10	The Phage Therapy Paradigm: Prêt-Ã-Porter or Sur-mesure?. Pharmaceutical Research, 2011, 28, 934-937.	1.7	249
11	The Use of Phages for the Removal of Infectious Biofilms. Current Pharmaceutical Biotechnology, 2008, 9, 261-266.	0.9	239
12	Molecular Aspects and Comparative Genomics of Bacteriophage Endolysins. Journal of Virology, 2013, 87, 4558-4570.	1.5	222
13	Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. Journal of Antimicrobial Chemotherapy, 2005, 56, 331-336.	1.3	211
14	Bacteriophages and Their Role in Food Safety. International Journal of Microbiology, 2012, 2012, 1-13.	0.9	210
15	Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 2011, 19, 241-247.	3.5	208
16	Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current Opinion in Microbiology, 2017, 39, 48-56.	2.3	194
17	The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiology, 2010, 10, 232.	1.3	174
18	Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 127-138.	2.0	166

#	Article	IF	CITATIONS
19	Comparative Antibody-Mediated Phagocytosis of Staphylococcus epidermidis Cells Grown in a Biofilm or in the Planktonic State. Infection and Immunity, 2006, 74, 4849-4855.	1.0	165
20	Phage Therapy: Going Temperate?. Trends in Microbiology, 2019, 27, 368-378.	3.5	164
21	Current challenges and future opportunities of phage therapy. FEMS Microbiology Reviews, 2020, 44, 684-700.	3.9	151
22	Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids and Surfaces B: Biointerfaces, 1999, 14, 141-148.	2.5	143
23	A Thermostable Salmonella Phage Endolysin, Lys68, with Broad Bactericidal Properties against Gram-Negative Pathogens in Presence of Weak Acids. PLoS ONE, 2014, 9, e108376.	1.1	143
24	Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. Journal of Virology, 2015, 89, 7449-7456.	1.5	142
25	Monitoring cell detachment by surfactants in a parallel plate flow chamber. Water Science and Technology, 2003, 47, 77-82.	1.2	139
26	Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Research in Microbiology, 2011, 162, 798-806.	1.0	130
27	Adhesion to and Viability of Listeria monocytogenes on Food Contact Surfaces. Journal of Food Protection, 2008, 71, 1379-1385.	0.8	126
28	Glycosylation: impact, control and improvement during therapeutic protein production. Critical Reviews in Biotechnology, 2014, 34, 281-299.	5.1	125
29	Structural and Enzymatic Characterization of ABgp46, a Novel Phage Endolysin with Broad Anti-Gram-Negative Bacterial Activity. Frontiers in Microbiology, 2016, 7, 208.	1.5	118
30	Bacteriophage \hat{l}_{l}^{\dagger} S1 Infection of Pseudomonas fluorescens Planktonic Cellsversus Biofilms. Biofouling, 2004, 20, 133-138.	0.8	117
31	Morphogenesis Control in <i>Candida albicans</i> and <i>Candida dubliniensis</i> through Signaling Molecules Produced by Planktonic and Biofilm Cells. Eukaryotic Cell, 2007, 6, 2429-2436.	3.4	114
32	Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Letters in Applied Microbiology, 2007, 45, 313-317.	1.0	113
33	Characterization of Modular Bacteriophage Endolysins from Myoviridae Phages OBP, 201ï†2-1 and PVP-SE1. PLoS ONE, 2012, 7, e36991.	1.1	109
34	Molecular Basis for Preferential Protective Efficacy of Antibodies Directed to the Poorly Acetylated Form of Staphylococcal Poly- N -Acetyl-Î ² -(1-6)-Glucosamine. Infection and Immunity, 2007, 75, 3406-3413.	1.0	108
35	Pseudomonas fluorescens biofilms subjected to phage philBB-PF7A. BMC Biotechnology, 2008, 8, 79.	1.7	107
36	The effect of hydrodynamic conditions on the phenotype of <i>Pseudomonas fluorescens </i> Biofouling, 2007, 23, 249-258.	0.8	103

#	Article	IF	Citations
37	Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics, 2019, 8, 103.	1.5	103
38	Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections. Frontiers in Microbiology, 2016, 7, 1024.	1.5	100
39	Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses, 2018, 10, 292.	1.5	99
40	Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnology, 2008, 8, 80.	1.7	94
41	Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to Silicone???Hydrogel Contact Lenses. Optometry and Vision Science, 2005, 82, 446-450.	0.6	93
42	Phage control of dual species biofilms of <i>Pseudomonas fluorescens </i> lentus . Biofouling, 2010, 26, 567-575.	0.8	93
43	Phage Therapy Is Effective against Infection by Mycobacterium ulcerans in a Murine Footpad Model. PLoS Neglected Tropical Diseases, 2013, 7, e2183.	1.3	91
44	Phage therapy efficacy: a review of the last 10 years of preclinical studies. Critical Reviews in Microbiology, 2020, 46, 78-99.	2.7	90
45	Infective endocarditis in intravenous drug abusers: an update. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 2905-2910.	1.3	89
46	The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiology, 2009, 9, 148.	1.3	87
47	A bacteriophage detection tool for viability assessment of Salmonella cells. Biosensors and Bioelectronics, 2014, 52, 239-246.	5.3	87
48	<i>Candida glabrata</i> and <i>Candida albicans</i> coâ€infection of an <i>in vitro</i> oral epithelium. Journal of Oral Pathology and Medicine, 2011, 40, 421-427.	1.4	86
49	Pseudomonas fluorescensinfection by bacteriophage $\tilde{A}\check{Z}\hat{A} S1$: the influence of temperature, host growth phase and media. FEMS Microbiology Letters, 2004, 241, 13-20.	0.7	84
50	InÂVitro Biofilm Activity of Non-Candida albicans Candida Species. Current Microbiology, 2010, 61, 534-540.	1.0	82
51	Examination of Potential Virulence Factors of Candida tropicalis Clinical Isolates From Hospitalized Patients. Mycopathologia, 2010, 169, 175-182.	1.3	82
52	Ability of phages to infect <i>Acinetobacter calcoaceticusâ€Acinetobacter baumannii</i> complex species through acquisition of different pectate lyase depolymerase domains. Environmental Microbiology, 2017, 19, 5060-5077.	1.8	81
53	Genomic and Proteomic Characterization of the Broad-Host-Range Salmonella Phage PVP-SE1: Creation of a New Phage Genus. Journal of Virology, 2011, 85, 11265-11273.	1.5	80
54	The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses. Contact Lens and Anterior Eye, 2007, 30, 183-188.	0.8	79

#	Article	IF	CITATIONS
55	Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against <i>Candida</i> species. Future Microbiology, 2014, 9, 139-146.	1.0	78
56	Technological progresses in monoclonal antibody production systems. Biotechnology Progress, 2010, 26, 332-351.	1.3	77
57	In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Veterinary Microbiology, 2010, 146, 303-308.	0.8	72
58	The effect of silver nanoparticles and nystatin on mixed biofilms of <i>Candida glabrata </i> and <i>Candida albicans </i> on acrylic. Medical Mycology, 2013, 51, 178-184.	0.3	72
59	Bacteriophage endolysins as a response to emerging foodborne pathogens. Trends in Food Science and Technology, 2012, 28, 103-115.	7.8	71
60	Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2004, 33, 235-241.	2.5	70
61	Silicone colonization by non-Candida albicans Candida species in the presence of urine. Journal of Medical Microbiology, 2010, 59, 747-754.	0.7	68
62	Effects of Growth in the Presence of Subinhibitory Concentrations of Dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus Biofilms. Applied and Environmental Microbiology, 2005, 71, 8677-8682.	1.4	67
63	Effect of Farnesol on Planktonic and Biofilm Cells of Staphylococcus epidermidis. Current Microbiology, 2009, 59, 118-122.	1.0	67
64	Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine. Scientific Reports, 2016, 6, 39235.	1.6	67
65	Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Science and Technology, 2003, 47, 175-179.	1.2	63
66	The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm. Research in Microbiology, 2005, 156, 650-655.	1.0	63
67	A suggested classification for two groups of Campylobacter myoviruses. Archives of Virology, 2014, 159, 181-190.	0.9	63
68	<i>Salmonella</i> Enteritidis bacteriophage candidates for phage therapy of poultry. Journal of Applied Microbiology, 2010, 108, 1175-1186.	1.4	61
69	Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium. Journal of Infection, 2014, 69, 396-407.	1.7	61
70	Novel strategies to fight <i>Candida</i> species infection. Critical Reviews in Microbiology, 2016, 42, 594-606.	2.7	60
71	Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Scientific Reports, 2018, 8, 15346.	1.6	60
72	Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. Journal of General Virology, 2014, 95, 506-515.	1.3	59

#	Article	IF	CITATIONS
73	Physico-chemical surface characterization of a bacterial population isolated from a milking machine. Food Microbiology, 2005, 22, 247-251.	2.1	58
74	Functional Analysis and Antivirulence Properties of a New Depolymerase from a Myovirus That Infects Acinetobacter baumannii Capsule K45. Journal of Virology, 2019, 93, .	1.5	58
75	Comparison of the Adhesion Ability of Different Salmonella Enteritidis Serotypes to Materials Used in Kitchens. Journal of Food Protection, 2006, 69, 2352-2356.	0.8	57
76	Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling. PLoS ONE, 2014, 9, e102507.	1.1	56
77	Comparative study of siliconeâ€hydrogel contact lenses surfaces before and after wear using atomic force microscopy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 361-367.	1.6	55
78	Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. Journal of Medical Microbiology, 2011, 60, 1717-1724.	0.7	55
79	Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration. Materials Science and Engineering C, 2019, 105, 109985.	3.8	53
80	Isolation and characterization of bacteriophages for avian pathogenic <i>E. coli</i> strains. Journal of Applied Microbiology, 2009, 106, 1919-1927.	1.4	52
81	The role of exopolymers in the attachment of <i>sphingomonas paucimobilis </i> . Biofouling, 2000, 16, 59-67.	0.8	51
82	Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. Trends in Biotechnology, 2018, 36, 966-984.	4.9	51
83	Candida albicans and Candida dubliniensis: comparison of biofilm formation in terms of biomass and activity. British Journal of Biomedical Science, 2006, 63, 5-11.	1.2	50
84	SYBR green as a fluorescent probe to evaluate the biofilm physiological state of <i>Staphylococcus epidermidis</i> , using flow cytometry. Canadian Journal of Microbiology, 2011, 57, 850-856.	0.8	49
85	Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate. AMB Express, 2011, 1, 34.	1.4	49
86	Effects of fluconazole on <i>Candida glabrata</i> biofilms and its relationship with ABC transporter gene expression. Biofouling, 2014, 30, 447-457.	0.8	49
87	Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics, 2019, 20, 357.	1.2	49
88	The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa. Clinical Microbiology and Infection, 2011, 17, 264-272.	2.8	47
89	Characterization of a New Staphylococcus aureus Kayvirus Harboring a Lysin Active against Biofilms. Viruses, 2018, 10, 182.	1.5	47
90	Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Scientific Reports, 2019, 9, 6643.	1.6	47

#	Article	IF	Citations
91	Unexploited opportunities for phage therapy. Frontiers in Pharmacology, 2015, 6, 180.	1.6	46
92	Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. International Journal of Antimicrobial Agents, 2019, 54, 329-337.	1.1	44
93	Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102145.	1.7	44
94	Selection and Characterization of a Multivalent <i>Salmonella</i> Phage and Its Production in a Nonpathogenic <i>Escherichia coli</i> Strain. Applied and Environmental Microbiology, 2010, 76, 7338-7342.	1.4	42
95	A Genotypic Analysis of Five P. aeruginosa Strains after Biofilm Infection by Phages Targeting Different Cell Surface Receptors. Frontiers in Microbiology, 2017, 8, 1229.	1.5	41
96	Characterization and genome sequencing of a Citrobacter freundii phage CfP1 harboring a lysin active against multidrug-resistant isolates. Applied Microbiology and Biotechnology, 2016, 100, 10543-10553.	1.7	40
97	Understanding the Complex Phage-Host Interactions in Biofilm Communities. Annual Review of Virology, 2021, 8, 73-94.	3.0	40
98	Effect of Farnesol on Structure and Composition of Staphylococcus epidermidis Biofilm Matrix. Current Microbiology, 2011, 63, 354-359.	1.0	38
99	Effect of magnetic hyperthermia on the structure of biofilm and cellular viability of a food spoilage bacterium. Biofouling, 2013, 29, 1225-1232.	0.8	38
100	K2 Capsule Depolymerase Is Highly Stable, Is Refractory to Resistance, and Protects Larvae and Mice from Acinetobacter baumannii Sepsis. Applied and Environmental Microbiology, 2019, 85, .	1.4	38
101	Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation. Letters in Applied Microbiology, 2004, 39, 420-424.	1.0	37
102	Crystal violet staining to quantify Candida adhesion to epithelial cells. British Journal of Biomedical Science, 2010, 67, 120-125.	1.2	37
103	Method for bacteriophage isolation against target <i>Campylobacter</i> strains. Letters in Applied Microbiology, 2010, 50, 192-197.	1.0	37
104	<i>Listeria monocytogenes</i> and <i>Salmonella enterica</i> Enteritidis Biofilms Susceptibility to Different Disinfectants and Stress-Response and Virulence Gene Expression of Surviving Cells. Microbial Drug Resistance, 2011, 17, 181-189.	0.9	37
105	Designing P. aeruginosa synthetic phages with reduced genomes. Scientific Reports, 2021, 11, 2164.	1.6	37
106	Targeting biofilms using phages and their enzymes. Current Opinion in Biotechnology, 2021, 68, 251-261.	3.3	37
107	Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 181-186.	1.4	35
108	Adhesion of Salmonella Enteritidis to stainless steel surfaces. Brazilian Journal of Microbiology, 2007, 38, 318-323.	0.8	35

#	Article	IF	Citations
109	Characterization of <i>Candida parapsilosis</i> infection of an <i>in vitro</i> reconstituted human oral epithelium. European Journal of Oral Sciences, 2009, 117, 669-675.	0.7	35
110	The Role of Exopolymers Produced by Sphingomonas paucimobilisin Biofilm Formation and Composition. Biofouling, 2000, 16, 17-27.	0.8	34
111	Effect of progesterone on Candida albicans vaginal pathogenicity. International Journal of Medical Microbiology, 2014, 304, 1011-1017.	1.5	34
112	Escherichia coli and Salmonella Enteritidis dual-species biofilms: interspecies interactions and antibiofilm efficacy of phages. Scientific Reports, 2019, 9, 18183.	1.6	34
113	Antibiotherapy and pathogenesis of uncomplicated UTI: difficult relationships. Journal of Applied Microbiology, 2009, 106, 1779-1791.	1.4	33
114	Oral Candida carriage of patients attending a dental clinic in Braga, Portugal. Revista Iberoamericana De Micologia, 2010, 27, 119-124.	0.4	33
115	<i>Candida tropicalis</i> biofilms: artificial urine, urinary catheters and flow model. Medical Mycology, 2011, 49, 1-9.	0.3	33
116	Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization. Applied and Environmental Microbiology, 2002, 68, 3385-3391.	1.4	32
117	Effect of farnesol on Candida dubliniensis morphogenesis. Letters in Applied Microbiology, 2007, 44, 199-205.	1.0	32
118	Bacterial Adhesion to Worn Silicone Hydrogel Contact Lenses. Optometry and Vision Science, 2008, 85, 520-525.	0.6	32
119	Efficacy of a Broad Host Range Lytic Bacteriophage Against E. coli Adhered to Urothelium. Current Microbiology, 2011, 62, 1128-1132.	1.0	32
120	Purification of polysaccharides from a biofilm matrix by selective precipitation of proteins. Biotechnology Letters, 1999, 13, 391-393.	0.5	31
121	The role of bacteriophages in periodontal health and disease. Future Microbiology, 2016, 11, 1359-1369.	1.0	31
122	<i>Helicobacter pylori</i> infection: from standard to alternative treatment strategies. Critical Reviews in Microbiology, 2022, 48, 376-396.	2.7	31
123	Salmonella enterica Enteritidis Biofilm Formation and Viability on Regular and Triclosan-Impregnated Bench Cover Materials. Journal of Food Protection, 2011, 74, 32-37.	0.8	30
124	Comparative evaluation of coagulase-negative staphylococci (CoNS) adherence to acrylic by a static method and a parallel-plate flow dynamic method. Research in Microbiology, 2004, 155, 755-760.	1.0	29
125	Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent <i>in situ</i> hybridization (LNA-FISH). Biofouling, 2016, 32, 179-190.	0.8	29
126	Polymeric supports for the adhesion of a consortium of autotrophic nitrifying bacteria. Biotechnology Letters, 1997, 11, 751-754.	0.5	28

#	Article	IF	Citations
127	Methods to extract the exopolymeric matrix from biofilms: a comparative study. Water Science and Technology, 1999, 39, 243-250.	1.2	28
128	Effect of sub-lethal chemical disinfection on the biofilm forming ability, resistance to antibiotics and expression of virulence genes of <i>Salmonella</i> Enteritidis biofilm-surviving cells. Biofouling, 2020, 36, 101-112.	0.8	28
129	Title is missing!. Biotechnology Letters, 2002, 24, 795-800.	1.1	27
130	The effect of lens wear on refractive index of conventional hydrogel and silicone-hydrogel contact lenses: A comparative study. Contact Lens and Anterior Eye, 2008, 31, 89-94.	0.8	27
131	Advances and Drawbacks of the Adaptation to Serum-Free Culture of CHO-K1 Cells for Monoclonal Antibody Production. Applied Biochemistry and Biotechnology, 2013, 169, 1279-1291.	1.4	27
132	A new method for extraction of exopolymers from activated sludges. Water Science and Technology, 1998, 37, 367-370.	1.2	26
133	Complete Genome Sequence of the Broad-Host-Range Paenibacillus larvae Phage philBB_Pl23. Genome Announcements, 2013, 1, .	0.8	25
134	Antimicrobial activity of Mycobacteriophage D29 Lysin B during Mycobacterium ulcerans infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007113.	1.3	25
135	Experimental methodology to quantify Candida albicans cell surface hydrophobicity. Biotechnology Letters, 2002, 24, 1111-1115.	1.1	24
136	The influence of the mode of administration in the dissemination of three coliphages in chickens. Poultry Science, 2009, 88, 728-733.	1.5	24
137	Comparison of commercial serum-free media for CHO-K1 cell growth and monoclonal antibody production. International Journal of Pharmaceutics, 2012, 437, 303-305.	2.6	24
138	Candida tropicalis biofilms: Effect on urinary epithelial cells. Microbial Pathogenesis, 2012, 53, 95-99.	1.3	24
139	Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. Journal of Medical Microbiology, 2014, 63, 1274-1283.	0.7	24
140	The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen <i>Candida glabrata</i> . G3: Genes, Genomes, Genetics, 2017, 7, 1-18.	0.8	24
141	The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia, 2017, 182, 653-664.	1.3	24
142	Survival of Clinical and Food Isolates of <i>Listeria monocytogenes</i> Through Simulated Gastrointestinal Tract Conditions. Foodborne Pathogens and Disease, 2010, 7, 121-128.	0.8	23
143	Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies. Scientific Reports, 2017, 7, 46157.	1.6	23
144	CandidaSpecies Adhesion to Oral Epithelium: Factors Involved and Experimental Methodology Used. Critical Reviews in Microbiology, 2006, 32, 217-226.	2.7	22

#	Article	IF	CITATIONS
145	Changes in UV-Visible Transmittance of Silicone-Hydrogel Contact Lenses Induced by Wear. Optometry and Vision Science, 2009, 86, 332-339.	0.6	22
146	<i>Candida</i> species extracellular alcohols: production and effect in sessile cells. Journal of Basic Microbiology, 2010, 50, S89-97.	1.8	22
147	Farnesol as Antibiotics Adjuvant in Staphylococcus epidermidis Control In Vitro. American Journal of the Medical Sciences, 2011, 341, 191-195.	0.4	22
148	Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia, 2016, 181, 217-224.	1.3	22
149	A Tailspike with Exopolysaccharide Depolymerase Activity from a New Providencia stuartii Phage Makes Multidrug-Resistant Bacteria Susceptible to Serum-Mediated Killing. Applied and Environmental Microbiology, 2020, 86, .	1.4	22
150	Interfacial interactions between nitrifying bacteria and mineral carriers in aqueous media determined by contact angle measurements and thin layer wicking. Colloids and Surfaces B: Biointerfaces, 1998, 12, 69-75.	2.5	21
151	Adhesion of <i>Listeria monocytogenes</i> to materials commonly found in domestic kitchens. International Journal of Food Science and Technology, 2008, 43, 1239-1244.	1.3	21
152	The role of polysaccharide intercellular adhesin (PIA) in Staphylococcus epidermidis adhesion to host tissues and subsequent antibiotic tolerance. European Journal of Clinical Microbiology and Infectious Diseases, 2009, 28, 623-629.	1.3	21
153	Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 – a unique member of the Siphoviridae family. Research in Microbiology, 2014, 165, 679-685.	1.0	21
154	Influence of glucose concentration on the structure and quantity of biofilms formed by Candida parapsilosis. FEMS Yeast Research, 2015, 15, fov043.	1.1	21
155	The Protective Effect of Staphylococcus epidermidis Biofilm Matrix against Phage Predation. Viruses, 2020, 12, 1076.	1.5	21
156	A new method for precipitating bacterial exopolysaccharides. Biotechnology Letters, 1996, 10, 341.	0.5	20
157	The First Paenibacillus larvae Bacteriophage Endolysin (PlyPl23) with High Potential to Control American Foulbrood. PLoS ONE, 2015, 10, e0132095.	1.1	20
158	Bacteriophageâ€receptor binding proteins for multiplex detection of <i>Staphylococcus</i> and <i>Enterococcus</i> in blood. Biotechnology and Bioengineering, 2020, 117, 3286-3298.	1.7	20
159	The genome and proteome of a Campylobacter coli bacteriophage vB_CcoM-IBB_35 reveal unusual features. Virology Journal, 2012, 9, 35.	1.4	19
160	The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells. New Biotechnology, 2013, 30, 563-572.	2.4	19
161	Control of i>Salmonella i>Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling, 2018, 34, 753-768.	0.8	19
162	Identification of the first endolysin Cell Binding Domain (CBD) targeting Paenibacillus larvae. Scientific Reports, 2019, 9, 2568.	1.6	19

#	Article	IF	CITATIONS
163	<i>Candida glabrata's</i> recurrent infections: biofilm formation during Amphotericin B treatment. Letters in Applied Microbiology, 2016, 63, 77-81.	1.0	17
164	Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiology Ecology, 2018, 94, .	1.3	17
165	An overview of the current state of phage therapy for the treatment of biofilm-related infections. Current Opinion in Virology, 2022, 53, 101209.	2.6	17
166	YEAST FLOCCULATION: A NEW METHOD FOR CHARACTERISING CELL SURFACE INTERACTIONS. Journal of the Institute of Brewing, 1997, 103, 359-361.	0.8	16
167	Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 239-246.	1.9	16
168	Real-time quantification of Pseudomonas fluorescenscell removal from glass surfaces due to bacteriophage i-S1 application. Journal of Applied Microbiology, 2008, 105, 196-202.	1.4	16
169	An in vitro evaluation of Candida tropicalis infectivity using human cell monolayers. Journal of Medical Microbiology, 2011, 60, 1270-1275.	0.7	16
170	Bacteriophages to control Shiga toxin-producing <i>E. coli</i> a \in safety and regulatory challenges. Critical Reviews in Biotechnology, 2020, 40, 1081-1097.	5.1	16
171	A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. Scientific Reports, 2020, 10, 6260.	1.6	16
172	Bacteriophage Attack as an Anti-biofilm Strategy. Methods in Molecular Biology, 2014, 1147, 277-285.	0.4	15
173	The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody. SpringerPlus, 2013, 2, 25.	1.2	14
174	Differential transcription profiling of the phage LUZ19 infection process in different growth media. RNA Biology, 2021, 18, 1778-1790.	1.5	14
175	Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production. Journal of Microbiology and Biotechnology, 2013, 23, 1308-1321.	0.9	14
176	Effect of Batch and Fed-Batch Growth Modes on Biofilm Formation by Listeria monocytogenes at Different Temperatures. Current Microbiology, 2009, 59, 457-462.	1.0	13
177	Farnesol in combination with N-acetylcysteine against Staphylococcus epidermidis planktonic and biofilm cells. Brazilian Journal of Microbiology, 2012, 43, 235-242.	0.8	13
178	<i>Candida tropicalis</i> biofilm and human epithelium invasion is highly influenced by environmental pH. Pathogens and Disease, 2016, 74, ftw101.	0.8	13
179	A Lytic Providencia rettgeri Virus of Potential Therapeutic Value Is a Deep-Branching Member of the <i>T5virus</i> Genus. Applied and Environmental Microbiology, 2017, 83, .	1.4	13
180	Characterization of a new podovirus infecting Paenibacillus larvae. Scientific Reports, 2019, 9, 20355.	1.6	13

#	Article	IF	CITATIONS
181	Evaluation by Flow Cytometry of Escherichia coli Viability in Lettuce after Disinfection. Antibiotics, 2020, 9, 14.	1.5	13
182	The Effect of Octylglucoside and Sodium Cholate in Staphylococcus epidermidis and Pseudomonas aeruginosa Adhesion to Soft Contact Lenses. Optometry and Vision Science, 2007, 84, 429-434.	0.6	12
183	Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells. World Journal of Microbiology and Biotechnology, 2008, 24, 423-426.	1.7	12
184	Natural and Induced Antibodies Against Phages in Humans: Induction Kinetics and Immunogenicity for Structural Proteins of PB1-Related Phages. Phage, 2020, 1, 91-99.	0.8	12
185	Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics, 2021, 22, 366.	1.2	12
186	Development of an Anti-Acinetobacter baumannii Biofilm Phage Cocktail: Genomic Adaptation to the Host. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0192321.	1.4	12
187	Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕlBB-PF7A. Virology Journal, 2011, 8, 142.	1.4	11
188	Genome Sequence of the Broad-Host-Range Pseudomonas Phage $\hat{l}_1^{\dagger}\text{-S1}.$ Journal of Virology, 2012, 86, 10239-10239.	1.5	11
189	Evaluation of the OSCARâ,,¢ system for the production of monoclonal antibodies by CHO-K1 cells. International Journal of Pharmaceutics, 2012, 430, 42-46.	2.6	11
190	Wave characterization for mammalian cell culture: residence time distribution. New Biotechnology, 2012, 29, 402-408.	2.4	11
191	Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies. BMC Cancer, 2016, 16, 881.	1.1	11
192	Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Medical Mycology, 0, , 1 -9.	0.3	11
193	Cell wall surface properties and flocculence of a Kluyveromyces marxianus strain. Colloids and Surfaces B: Biointerfaces, 1995, 5, 197-203.	2.5	10
194	Influence of Sub-Inhibitory Concentrations of Antimicrobial Agents on Biofilm Formation in Indwelling Medical Devices. International Journal of Artificial Organs, 2005, 28, 1181-1185.	0.7	10
195	The involvement of physico-chemical interactions in the adhesion of Candida albicans and Candida dubliniensis to epithelial cells. Mycoses, 2007, 50, 391-396.	1.8	10
196	Candida clinical species identification: molecular and biochemical methods. Annals of Microbiology, 2010, 60, 105-112.	1.1	10
197	Bacteriophage-Based Biotechnological Applications. Viruses, 2019, 11, 737.	1.5	10
198	The influence of lens material and lens wear on the removal and viability of Staphylococcus epidermidis. Contact Lens and Anterior Eye, 2008, 31, 126-130.	0.8	9

#	Article	IF	CITATIONS
199	<i>In vivo</i> toxicity study of phage lysate in chickens. British Poultry Science, 2009, 50, 558-563.	0.8	9
200	Modulation of polyâ€ <i>N</i> àâ€acetylglucosamine accumulation within mature <i>Staphylococcus epidermidis</i> biofilms grown in excess glucose. Microbiology and Immunology, 2011, 55, 673-682.	0.7	9
201	Detection and Quantification of Fluconazole Within Candida glabrata Biofilms. Mycopathologia, 2015, 179, 391-395.	1.3	9
202	Exploiting phage-derived carbohydrate depolymerases for combating infectious diseases. Trends in Microbiology, 2022, 30, 707-709.	3 . 5	9
203	Determination of cell number and size of a population of Pseudomonas fluorescens by image analysis. Biotechnology Letters, 1997, 11, 355-358.	0.5	8
204	Effect of progesterone on Candida albicans biofilm formation under acidic conditions: A transcriptomic analysis. International Journal of Medical Microbiology, 2020, 310, 151414.	1.5	8
205	Pseudomonas Bacteriophage Isolation and Production. Methods in Molecular Biology, 2014, 1149, 23-32.	0.4	8
206	Lens material and formulation of multipurpose solutions affects contact lens disinfection. Contact Lens and Anterior Eye, 2011, 34, 179-182.	0.8	7
207	Strategies for adaptation of mAb-producing CHO cells to serum-free medium. BMC Proceedings, 2011, 5, P112.	1.8	7
208	Control of Bacterial Cells Growths by Magnetic Hyperthermia. IEEE Transactions on Magnetics, 2013, 49, 3508-3511.	1.2	7
209	Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources. Applied Surface Science, 2013, 270, 1-5.	3.1	7
210	Evaluation of the ability of <i>C. albicans </i> to form biofilm in the presence of phage-resistant phenotypes of <i>P. aeruginosa </i> Biofouling, 2013, 29, 1169-1180.	0.8	7
211	Complete Genome Sequence of the Pseudomonas aeruginosa Bacteriophage philBB-PAA2. Genome Announcements, 2014, 2, .	0.8	7
212	Discrimination of clinically relevant Candida species by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). RSC Advances, 2016, 6, 92065-92072.	1.7	7
213	Bacteriophage biodistribution and infectivity from honeybee to bee larvae using a T7 phage model. Scientific Reports, 2019, 9, 620.	1.6	7
214	Evaluation of Solid and Porous Microcarriers for Cell Growth and Production of Recombinant Proteins. Methods in Molecular Biology, 2014, 1104, 137-147.	0.4	7
215	Targeted Antimicrobial Photodynamic Therapy of Biofilm-Embedded and Intracellular Staphylococci with a Phage Endolysin's Cell Binding Domain. Microbiology Spectrum, 2022, 10, e0146621.	1.2	7
216	Feed Optimization in Fed-Batch Culture. Methods in Molecular Biology, 2014, 1104, 105-116.	0.4	6

#	Article	IF	CITATIONS
217	Complete Genome Sequence of Pseudomonas aeruginosa Phage vB_PaeM_CEB_DP1. Genome Announcements, 2015, 3, .	0.8	6
218	Inactivation of Pseudomonas aeruginosa in mineral water by DP1 bacteriophage immobilized on ethyleneâ€vinyl acetate copolymer used as seal caps of plastic bottles. Journal of Applied Polymer Science, 2020, 137, 49009.	1.3	6
219	The interactions of bacteriophage Ace and Shiga toxin-producing <i>Escherichia coli</i> during biocontrol. FEMS Microbiology Ecology, 2021, 97, .	1.3	6
220	Phage Therapy of Infectious Biofilms: Challenges and Strategies. , 2019, , 295-313.		6
221	MIC Evaluation of Candida Reference Strains and Clinical Isolates by E-Test. Journal of Chemotherapy, 2009, 21, 351-355.	0.7	5
222	Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Science and Technology, 2003, 47, 175-9.	1.2	5
223	Susceptibility testing of Candida albicans and Candida glabrata to Glycyrrhiza glabra L Industrial Crops and Products, 2017, 108, 480-484.	2.5	4
224	Farnesol in combination with N-acetylcysteine against Staphylococcus epidermidis planktonic and biofilm cells. Brazilian Journal of Microbiology, 2012, 43, 235-42.	0.8	4
225	Phage-Host Interaction Analysis by Flow Cytometry Allows for Rapid and Efficient Screening of Phages. Antibiotics, 2022, 11, 164.	1.5	4
226	Phages Against Infectious Diseases. Topics in Biodiversity and Conservation, 2017, , 269-294.	0.3	3
227	Synthetic Biology to Engineer Bacteriophage Genomes. Methods in Molecular Biology, 2018, 1693, 285-300.	0.4	3
228	Deep impact of the inactivation of the SecA2-only protein export pathway on the proteosurfaceome of Listeria monocytogenes. Journal of Proteomics, 2021, 250, 104388.	1.2	3
229	Characterization and Genomic Analysis of a New Phage Infecting Helicobacter pylori. International Journal of Molecular Sciences, 2022, 23, 7885.	1.8	3
230	The Influence of P. fluorescens Cell Morphology on the Lytic Performance and Production of Phage i-IBB-PF7A. Current Microbiology, 2011, 63, 347-353.	1.0	2
231	Phages as Therapeutic Tools to Control Major Foodborne Pathogens: Campylobacter and Salmonella. , 0, , .		2
232	Techniques to Assess Phage–Biofilm Interaction. Methods in Molecular Biology, 2019, 1898, 137-146.	0.4	2
233	Unpuzzling Friunavirus-Host Interactions One Piece at a Time: Phage Recognizes Acinetobacter pittii via a New K38 Capsule Depolymerase. Antibiotics, 2021, 10, 1304.	1.5	2
234	The use of bacteriophages for P. aeruginosa biofilm control. , 2011, , .		1

#	Article	IF	CITATIONS
235	Preliminary evaluation of microcarrier culture for growth and monoclonal antibody production of CHO-K1 cells. BMC Proceedings, 2011, 5, P111.	1.8	1
236	Complete Genome Sequences of Eight Phages Infecting Enterotoxigenic Escherichia coli in Swine. Microbiology Resource Announcements, 2020, 9, .	0.3	1
237	Phage Therapy. WikiJournal of Medicine, 2021, 8, 4.	1.0	1
238	Induction and migration of cryptic/defective Salmonella enterica prophages as a consequence of infection with lytic phages is an additional factor in stability of a coevolutionary vector. Russian Journal of Genetics, 2010, 46, 497-500.	0.2	0
239	Treating Bacterial Infections With a Protein From a Virus. Frontiers for Young Minds, 0, 9, .	0.8	0