Olga Vinogradova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48756/publications.pdf

Version: 2024-02-01

45 papers 2,163 citations

279701 23 h-index 233338 45 g-index

46 all docs

46 docs citations

46 times ranked

2273 citing authors

#	Article	IF	CITATIONS
1	Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chemical Biology, 2022, 29, 985-995.e5.	2.5	19
2	New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. Membranes, 2022, 12, 227.	1.4	6
3	Intrinsic disorder in integral membrane proteins. Progress in Molecular Biology and Translational Science, 2021, 183, 101-134.	0.9	1
4	The Anti-Inflammatory Protein TNIP1 Is Intrinsically Disordered with Structural Flexibility Contributed by Its AHD1-UBAN Domain. Biomolecules, 2020, 10, 1531.	1.8	4
5	Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. Journal of Biological Chemistry, 2019, 294, 15914-15931.	1.6	59
6	Binding and backbone dynamics of protein under topological constraint: calmodulin as a model system. Chemical Communications, 2018, 54, 8917-8920.	2.2	2
7	Nanodiscs and solution NMR: preparation, application and challenges. Nanotechnology Reviews, 2017, 6, 111-125.	2.6	50
8	Phosphinophosphonates and Their Tris-pivaloyloxymethyl Prodrugs Reveal a Negatively Cooperative Butyrophilin Activation Mechanism. Journal of Medicinal Chemistry, 2017, 60, 2373-2382.	2.9	28
9	Investigation of the adaptor protein PLIC-2 in multiple pathways. Biochemistry and Biophysics Reports, 2017, 9, 341-348.	0.7	8
10	The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB Journal, 2017, 31, 4697-4706.	0.2	41
11	The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola. Scientific Reports, 2017, 7, 13260.	1.6	10
12	Expression of Cellulolytic Enzyme as a Fusion Protein That Reacts Specifically With a Polymeric Scaffold. Methods in Enzymology, 2017, 590, 259-276.	0.4	2
13	Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I. Journal of Biological Chemistry, 2015, 290, 12313-12331.	1.6	30
14	Synthesis and Biological Evaluation of a Phosphonate Phosphoantigen Prodrug. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 751-753.	0.8	1
15	Targeting Integrin-Dependent Adhesion and Signaling with 3-Arylquinoline and 3-Aryl-2-Quinolone Derivatives: A new Class of Integrin Antagonists. PLoS ONE, 2015, 10, e0141205.	1.1	4
16	Phospho-Tyrosine(s) vs. Phosphatidylinositol Binding in Shc Mediated Integrin Signaling. American Journal of Molecular Biology, 2015, 05, 17-31.	0.1	5
17	Synthesis of a Phosphoantigen Prodrug that Potently Activates VÎ ³ 9VÎ ² T-Lymphocytes. Chemistry and Biology, 2014, 21, 945-954.	6.2	86
18	Skelemin Association with \hat{l}_{\pm} (sub> \hat{l}_{\pm} (sub> \hat{l}_{\pm} (sub) Integrin: A Structural Model. Biochemistry, 2014, 53, 6766-6775.	1.2	3

#	Article	IF	Citations
19	Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1222-1231.	1.5	28
20	Structural insights into the recognition of \hat{l}^2 (sub>3 integrin cytoplasmic tail by the SH3 domain of Src kinase. Protein Science, 2013, 22, 1358-1365.	3.1	4
21	Integrin \hat{I}^2 3 Crosstalk with VEGFR Accommodating Tyrosine Phosphorylation as a Regulatory Switch. PLoS ONE, 2012, 7, e31071.	1.1	34
22	Structural studies of a signal peptide in complex with signal peptidase I cytoplasmic domain: The stabilizing effect of membraneâ€mimetics on the acquired fold. Proteins: Structure, Function and Bioinformatics, 2012, 80, 807-817.	1.5	7
23	NMR as a Unique Tool in Assessment and Complex Determination of Weak Protein–Protein Interactions. Topics in Current Chemistry, 2011, 326, 35-45.	4.0	48
24	Tyrosine Phosphorylation as a Conformational Switch. Journal of Biological Chemistry, 2011, 286, 40943-40953.	1.6	27
25	Integrin \hat{I}^2 3 Phosphorylation Dictates Its Complex with the Shc Phosphotyrosine-binding (PTB) Domain. Journal of Biological Chemistry, 2010, 285, 34875-34884.	1.6	27
26	NMR structural characterization of the pentaâ€peptide calpain inhibitor. FEBS Letters, 2009, 583, 135-140.	1.3	5
27	The Solution Structure of <i>Bacillus anthracis</i> Dihydrofolate Reductase Yields Insight into the Analysis of Structureâ°Activity Relationships for Novel Inhibitors. Biochemistry, 2009, 48, 4100-4108.	1.2	13
28	Structural biology of human cannabinoid receptor-2 helix 6 in membrane-mimetic environments. Biochemical and Biophysical Research Communications, 2009, 384, 243-248.	1.0	17
29	NMR solution structure of human cannabinoid receptor-1 helix 7/8 peptide: Candidate electrostatic interactions and microdomain formation. Biochemical and Biophysical Research Communications, 2009, 390, 441-446.	1.0	18
30	Characterization of the Neuron-Specific L1-CAM Cytoplasmic Tail: Naturally Disordered in Solution It Exercises Different Binding Modes for Different Adaptor Proteins. Biochemistry, 2008, 47, 4160-4168.	1.2	12
31	Structural Insight into the Interaction between Platelet Integrin αIIbβ3 and Cytoskeletal Protein Skelemin. Journal of Biological Chemistry, 2007, 282, 32349-32356.	1.6	11
32	Regulation of Integrin \hat{l} ±IIb \hat{l}^2 3 Activation by Distinct Regions of Its Cytoplasmic Tails. Biochemistry, 2006, 45, 6656-6662.	1.2	58
33	Structure of an Ultraweak Protein-Protein Complex and Its Crucial Role in Regulation of Cell Morphology and Motility. Molecular Cell, 2005, 17, 513-523.	4.5	116
34	Membrane-mediated structural transitions at the cytoplasmic face during integrin activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4094-4099.	3.3	115
35	Integrin Bidirectional Signaling: A Molecular View. PLoS Biology, 2004, 2, e169.	2.6	146
36	Structural and functional insights into PINCH LIM4 domain–mediated integrin signaling. Nature Structural and Molecular Biology, 2003, 10, 558-564.	3.6	64

#	Article	IF	CITATION
37	A Structural Mechanism of Integrin αllbβ3 "Inside-Out―Activation as Regulated by Its Cytoplasmic Face. Cell, 2002, 110, 587-597.	13.5	491
38	Protein–protein interactions probed by nuclear magnetic resonance spectroscopy. Methods in Enzymology, 2001, 339, 377-389.	0.4	34
39	NMR-Based Amide Hydrogen–Deuterium Exchange Measurements for Complex Membrane Proteins: Development and Critical Evaluation. Journal of Magnetic Resonance, 2000, 142, 111-119.	1.2	18
40	A structural basis for integrin activation by the cytoplasmic tail of the alpha IIb-subunit. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1450-1455.	3.3	134
41	On choosing a detergent for solution NMR studies of membrane proteins. Journal of Biomolecular NMR, 1998, 11, 381-386.	1.6	107
42	A Membrane Setting for the Sorting Motifs Present in the Adenovirus E3-13.7 Protein Which Down-regulates the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1998, 273, 17343-17350.	1.6	17
43	Structural characterization and immunochemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7975-7980.	3.3	124
44	Escherichia coli diacylglycerol kinase: a case study in the application of solution NMR methods to an integral membrane protein. Biophysical Journal, 1997, 72, 2688-2701.	0.2	68
45	Escherichia coli Diacylglycerol Kinase Is an α-Helical Polytopic Membrane Protein and Can Spontaneously Insert into Preformed Lipid Vesicles. Biochemistry, 1996, 35, 8610-8618.	1.2	61